图 9. 集电极-发射极饱和电压与集电极电流的关系;典型值 图 10. 集电极-发射极饱和电压与集电极电流的关系;典型值
图 9. 集电极-发射极饱和电压与集电极电流的关系;典型值 图 10. 集电极-发射极饱和电压与集电极电流的关系;典型值
一、引言 随着技术节点的不断缩小,邻近效应和光学衍射变得不可忽略,严重影响集成电路的成品率。分辨率增强技术(RET)是为了减少光刻过程中的印刷误差而开发的。光学邻近校正(OPC)是广泛使用的RET之一,通过校正掩模版图案形状和插入辅助特征来补偿光刻邻近效应。典型的OPC方法包括基于模型的方法[1]、[2]、[3]和基于逆光刻技术(ILT)的方法[4]、[5]、[6]、[7]、[8]、[9]。对于基于模型的 OPC,首先将掩模中的多边形边缘划分为段,然后在光刻模拟模型的指导下移动这些边缘。基于 ILT 的方法将掩模表示为逐像素函数 [4] 、 [5] 、 [6] 、 [7] 、 [10] 或水平集函数 [8] 、 [9] 、 [11] 、 [12] 。然后,将 OPC 过程建模为逆问题,可以通过优化
I. 引言 随着技术节点的不断缩小,邻近效应和光学衍射变得不可忽略,严重影响集成电路的成品率。分辨率增强技术(RET)被发展用来减少光刻过程中的印刷误差。光学邻近校正(OPC)是广泛使用的RET之一,它通过校正掩模版图案形状和插入辅助特征来补偿光刻邻近效应。典型的OPC方法包括基于模型的方法[1],[2],[3]和基于逆光刻技术(ILT)的方法[4],[5],[6],[7],[8],[9]。对于基于模型的OPC,首先将掩模版中多边形的边缘分成几段,然后在光刻仿真模型的指导下移动这些边缘。基于 ILT 的方法将掩膜表示为像素函数 [4]、[5]、[6]、[7]、[10] 或水平集函数 [8]、[9]、[11]、[12]。然后,将 OPC 过程建模为逆问题,可以通过优化
引言在过去的几十年里,集成电路的特征尺寸按照摩尔定律不断缩小。光学光刻已进入低 k -1 区域[1],[2],所用光的波长仍为193 nm。因此,使用传统光刻工艺获得高图案保真度和掩模版可印刷性变得越来越具有挑战性。此外,印刷晶圆图像对光刻条件的微小变化变得高度敏感。为了缓解这些问题,对光学光刻中的分辨率增强技术 (RET) 的要求变得更加严格[3],[4]。最广泛采用的 RET 之一是光学邻近校正 (OPC) [5],[6],[7],[8],[9]。传统OPC中,光刻掩模版针对主图案进行预失真处理,以补偿印刷晶圆图像的不良失真。然而,随着关键尺寸的缩小和目标图案的复杂化,仅使用OPC很难在足够的工艺窗口下获得令人满意的印刷图像。
引言在过去的几十年里,集成电路的特征尺寸按照摩尔定律不断缩小。光学光刻已进入低 k -1 区域[1],[2],所用光的波长仍为193 nm。因此,使用传统光刻工艺获得高图案保真度和掩模可印刷性变得越来越具有挑战性。此外,印刷晶圆图像对光刻条件的微小变化变得高度敏感。为了缓解这些问题,对光学光刻中的分辨率增强技术 (RET) 的要求变得更加严格[3],[4]。最广泛采用的 RET 之一是光学邻近校正 (OPC) [5],[6],[7],[8],[9]。传统OPC中,光刻掩模版针对主图案进行预失真处理,以补偿印刷晶圆图像的不良失真。然而,随着关键尺寸的缩小和目标图案的复杂化,仅使用OPC很难在足够的工艺窗口下获得令人满意的印刷图像。
可持续和安全的能源供应以及能源获取仍然是许多南部非洲国家面临的挑战,特别是在偏远地区。已经制定了总体计划和政策,强调可再生能源 (RE) 资源是优先事项。然而,尽管制定了这些雄心勃勃的行动计划,但该地区可再生能源技术 (RET) 的环境和经济潜力尚未得到利用。虽然主要实施了小规模的研究项目,但尚未建立大规模使用 RET 的全面综合方法。NEED 项目合作伙伴认为,研究和教育机构、私营部门和政府决策过程之间的薄弱联系是这方面的一个主要障碍。这就是 NEED 项目介入的地方,建立了一个包罗万象的网络,以团结和提高地方能力,并开展过去超出范围的特定活动领域。
摘要 - 由于高级集成电路的特征大小不断收缩,因此分辨率增强技术(RET)被利用来改善光刻过程中的可打印性。光学接近校正(OPC)是旨在补偿面罩以生成更精确的晶圆图像的最广泛使用的RET之一。在本文中,我们提出了一种基于级别的OPC方法,具有高面膜优化质量和快速收敛。为了抑制光刻过程中条件爆发的干扰,我们会提供一个新的过程窗口感知的成本函数。然后,采用了一种新颖的基于动量的进化技术,该技术取得了重大改进。我们还提出了一种自适应共轭梯度方法,该方法有望具有更高的优化稳定性和更少的消耗时间。此外,图形过程(GPU)被利用用于加速所提出的算法。我们将输出掩码从机器学习基于掩码优化流中作为输入和工作作为重新定位掩码的后过程。ICCAD 2013基准测试的实验结果表明,我们的算法在解决方案质量和运行时开销中均优于以前的所有OPC算法。
摘要 - 由于高级集成电路的特征大小不断收缩,因此分辨率增强技术(RET)被利用来改善光刻过程中的可打印性。光学接近校正(OPC)是旨在补偿面罩以生成更精确的晶圆图像的最广泛使用的RET之一。在本文中,我们提出了一种基于级别的OPC方法,具有高面膜优化质量和快速收敛。为了抑制光刻过程中条件爆发的干扰,我们会提供一个新的过程窗口感知的成本函数。然后,采用了一种新颖的基于动量的进化技术,该技术取得了重大改进。我们还提出了一种自适应共轭梯度方法,该方法有望具有更高的优化稳定性和更少的消耗时间。此外,图形过程(GPU)被利用用于加速所提出的算法。我们将输出掩码从机器学习基于掩码优化流中作为输入和工作作为重新定位掩码的后过程。ICCAD 2013基准测试的实验结果表明,我们的算法在解决方案质量和运行时开销中均优于以前的所有OPC算法。
国家科学技术委员会 (NCST) 是根据 2003 年第 16 号《科学技术 (S&T) 法》成立的半官方组织。其使命是促进、支持、协调和规范研究、科学、技术和创新的发展和应用,以创造财富并改善生活质量。《科学技术法》第 24 条设立了科学技术基金,其主要目标是推动马拉维的科学技术发展。为了实现这一目标,NCST 利用科学技术基金下的大挑战计划,为可再生能源技术 (RET) 组件的本地制造提供创新解决方案。