道格拉斯·埃拉拉纳加 - 摩尔6,克里斯蒂安·梅多7,弗朗西斯·贝尔穆德斯·米米尼斯(FrancissesBermúdez-Mimenez)8,拉巴·本(Rabah Ben),星期四9,法国文学10,阿恩霍布斯(Ainhoobs)11:12,“马里尼·贝托洛(Ainhoobs),“马里尼·贝托洛Luisa Master 7,Matthew R.G.泰勒7,维多利亚N. Parikh 16,Ashley Ashley 16,Roberto 11,12,19,John Bourke 13.14,Constantinos 1.2.2
Aitchison,J。(1982)。组成数据的统计分析。皇家统计学会杂志:B系列(统计方法论),44(2),139 - 177。Barnea-Goraly,N.,Menon,V.,Eckert,M.,Tamm,L.,Bammer,R.,Karchemskiy,A. 童年和青春期的白质开发:一项横截面扩散张量成像研究。 大脑皮层,15(12),1848 - 1854年。 Bernal-Rusiel,J。L.,Greve,D。N.,Reuter,M.,Fischl,B.,Sabuncu,M。R.,&Alzheimer's Diseation neurotimanting Initiative。 (2013)。 具有线性混合效应模型的纵向神经图像数据的统计分析。 neu-roimage,66,249 - 260。 Bernal-Rusiel,J。L.,Reuter,M.,Greve,D.N.,Fischl,B.,Sabuncu,M。R.,&Alzheimer's Disision神经影像学计划。 (2013)。 时空线性混合效应模型,用于纵向神经图像数据的质量分析。 Neuroimage,81,358 - 370。 Blakemore,S.-J。和Choudhury,S。(2006)。 青少年大脑的发展:对执行功能和社会认知的影响。 儿童心理学与精神病学杂志,47(3 - 4),296 - 312。 Bradley,R。H.和Corwyn,R。F.(2002)。 社会经济地位和儿童发展。 心理学年度评论,53(1),371 - 399。 Bray,S.,Krongold,M.,Cooper,C。和Lebel,C。(2015年)。 年龄对整个儿童和青春期白色和灰质体积模式的协同作用。 Campbell,F。A.和Ramey,C。T.(1994)。Barnea-Goraly,N.,Menon,V.,Eckert,M.,Tamm,L.,Bammer,R.,Karchemskiy,A.童年和青春期的白质开发:一项横截面扩散张量成像研究。大脑皮层,15(12),1848 - 1854年。Bernal-Rusiel,J。L.,Greve,D。N.,Reuter,M.,Fischl,B.,Sabuncu,M。R.,&Alzheimer's Diseation neurotimanting Initiative。(2013)。具有线性混合效应模型的纵向神经图像数据的统计分析。neu-roimage,66,249 - 260。Bernal-Rusiel,J。L.,Reuter,M.,Greve,D.N.,Fischl,B.,Sabuncu,M。R.,&Alzheimer's Disision神经影像学计划。 (2013)。 时空线性混合效应模型,用于纵向神经图像数据的质量分析。 Neuroimage,81,358 - 370。 Blakemore,S.-J。和Choudhury,S。(2006)。 青少年大脑的发展:对执行功能和社会认知的影响。 儿童心理学与精神病学杂志,47(3 - 4),296 - 312。 Bradley,R。H.和Corwyn,R。F.(2002)。 社会经济地位和儿童发展。 心理学年度评论,53(1),371 - 399。 Bray,S.,Krongold,M.,Cooper,C。和Lebel,C。(2015年)。 年龄对整个儿童和青春期白色和灰质体积模式的协同作用。 Campbell,F。A.和Ramey,C。T.(1994)。Bernal-Rusiel,J。L.,Reuter,M.,Greve,D.N.,Fischl,B.,Sabuncu,M。R.,&Alzheimer's Disision神经影像学计划。(2013)。时空线性混合效应模型,用于纵向神经图像数据的质量分析。Neuroimage,81,358 - 370。Blakemore,S.-J。和Choudhury,S。(2006)。青少年大脑的发展:对执行功能和社会认知的影响。儿童心理学与精神病学杂志,47(3 - 4),296 - 312。Bradley,R。H.和Corwyn,R。F.(2002)。 社会经济地位和儿童发展。 心理学年度评论,53(1),371 - 399。 Bray,S.,Krongold,M.,Cooper,C。和Lebel,C。(2015年)。 年龄对整个儿童和青春期白色和灰质体积模式的协同作用。 Campbell,F。A.和Ramey,C。T.(1994)。Bradley,R。H.和Corwyn,R。F.(2002)。社会经济地位和儿童发展。心理学年度评论,53(1),371 - 399。Bray,S.,Krongold,M.,Cooper,C。和Lebel,C。(2015年)。年龄对整个儿童和青春期白色和灰质体积模式的协同作用。Campbell,F。A.和Ramey,C。T.(1994)。Campbell,F。A.和Ramey,C。T.(1994)。Eneuro,2(4),Eneuro.0003 - Eneu15.2015。Bruchhage,M.M.,Ngo,G.-C.,Schneider,N.,D'Sa,V。,&Deoni,S。C.(2020)。功能连通性与婴儿和早期儿童认知发展的相关性。大脑结构和功能,225(2),669 - 681。早期干预对智力和学术成就的影响:对低收入家庭的儿童的后续研究。儿童发展,65(2),684 - 698。Chakraborty,S。和Zhang,X。(2021)。在高维度中用于距离和基于内核的指标的新框架。电子统计杂志,15(2),5455 - 5522。Chen,E。Z.和Li,H。(2016)。分析纵向微生物组组成数据的两部分混合效应模型。生物信息学,32(17),2611 - 2617。Chen,Y.,Dubey,P.,Müller,H.-G.,Bruchhage,M.,Wang,J.-L。,&Deoni,S。(2021)。 对早期神经发育中的稀疏纵向数据进行建模。 Neuroimage,237,118079。 dai,X.,Hadjipantelis,P.,Wang,J.-L.,Deoni,S.C。L.,&Müller,H.-G。 (2019)。 白质成熟与整个幼儿的认知发展之间的纵向关联。 人脑图,40(14),4130 - 4145。 Dai,X.,Lin,Z。,&Müller,H.-G。 (2021)。 建模Riemannian歧管上的稀疏纵向数据。 Biometrics,77(4),1328 - 1341。Chen,Y.,Dubey,P.,Müller,H.-G.,Bruchhage,M.,Wang,J.-L。,&Deoni,S。(2021)。对早期神经发育中的稀疏纵向数据进行建模。Neuroimage,237,118079。dai,X.,Hadjipantelis,P.,Wang,J.-L.,Deoni,S.C。L.,&Müller,H.-G。 (2019)。白质成熟与整个幼儿的认知发展之间的纵向关联。人脑图,40(14),4130 - 4145。Dai,X.,Lin,Z。,&Müller,H.-G。 (2021)。 建模Riemannian歧管上的稀疏纵向数据。 Biometrics,77(4),1328 - 1341。Dai,X.,Lin,Z。,&Müller,H.-G。 (2021)。建模Riemannian歧管上的稀疏纵向数据。Biometrics,77(4),1328 - 1341。
1 Harrison PJ,Tunbridge EM,Dolphin AC,Hall J. Hall J.电压门控钙通道阻滞剂用于精神疾病:基因组重新评估。英国精神病学杂志。2020; 216(5):250-53。2 Striessnig J,Pinggera A,Kaur G,Bock G,Tuluc P. L型Ca2+心脏和大脑中的通道。Wiley跨学科评论:膜运输和信号传导。2014; 3(2):15-38。 3 Soldatov,N。M.,Bouron,A.,Reuter,H。二氢吡啶对人Ca2+通道剪接变体的不同电压依赖性抑制作用。 生物学杂志,1995; 270(18):10540–10543。 4 Mazin PV,Khaitovich P,Cardoso-Moreira M,Kaessmann H.哺乳动物器官开发过程中的替代剪接。 自然遗传学。 2021; 53(6):925-34。 5 Clark MB,WRZesinski T,Garcia AB,Hall Nal,Kleinman JE,Hyde T等。 长阅读测序揭示了人脑中精神危险基因CACNA1C的复杂剪接曲线。 分子精神病学。 2020; 25(1):37-47。 6 Jaffe AE,Straub RE,Shin JH,Tao R,Gao Y,Collado-Torres L等。 人皮层转录组的发育和遗传调节阐明了精神分裂症的发病机理。 自然神经科学。 2018; 21(8):1117-25。2014; 3(2):15-38。3 Soldatov,N。M.,Bouron,A.,Reuter,H。二氢吡啶对人Ca2+通道剪接变体的不同电压依赖性抑制作用。生物学杂志,1995; 270(18):10540–10543。4 Mazin PV,Khaitovich P,Cardoso-Moreira M,Kaessmann H.哺乳动物器官开发过程中的替代剪接。自然遗传学。2021; 53(6):925-34。5 Clark MB,WRZesinski T,Garcia AB,Hall Nal,Kleinman JE,Hyde T等。长阅读测序揭示了人脑中精神危险基因CACNA1C的复杂剪接曲线。分子精神病学。2020; 25(1):37-47。6 Jaffe AE,Straub RE,Shin JH,Tao R,Gao Y,Collado-Torres L等。人皮层转录组的发育和遗传调节阐明了精神分裂症的发病机理。自然神经科学。2018; 21(8):1117-25。2018; 21(8):1117-25。
主要作者:Ester van der Voet,荷兰莱顿大学;章节编辑:Ester van der Voet,荷兰莱顿大学;Reijo Salminen,芬兰地质调查局,芬兰;Matthew Eckelman,美国波士顿东北大学;Gavin Mudd,澳大利亚莫纳什大学;Terry Norgate,澳大利亚联邦科学与工业研究组织矿产战略旗舰项目,澳大利亚;Roland Hischier,瑞士 EMPA;贡献作者:Job Spij- ker,荷兰国家公共卫生与环境研究所;Martina Vijver,荷兰莱顿大学;Olle Selinus,瑞典林奈大学;Leo Posthuma,荷兰国家公共卫生与环境研究所;Dick de Zwart,荷兰国家公共卫生与环境研究所;Dik van de Meent,荷兰奈梅亨拉德堡德大学;Markus Reuter,芬兰埃斯波 Outotec Oyj;Ladji Tikana,德国铜业发展协会,德国; Sonia Valdivia,环境署,法国; Patrick Wäger,EMPA,瑞士; Michael Hauschild,丹麦技术大学,丹麦; Arjan de Koning,荷兰莱顿大学。
筛查罕见的遗传诊断,以保持反义寡核苷酸治疗的发展:一项回顾性队列研究David Cheerie 1,2 Marlen C. Lauffer 3 Logan Newton 1,2 Kimberly Amburgey 1,2,2,2,2,2,4 Danique Beijer 5,6 Bushra Haque 1 Brian Haque 1 Brian T. PAN 1,2 Miriam Reuter 9,10 Michael J. Szego 2,11,12 Anna Szuto 1,2,10 n = 1合作Annemieke aartsma-Rus 3,13 Michelle M. Axford 14,15 Ashish R. Deshwar 1,2,9,10,10,10,10,10 James J. Dowling 1,2,2,2,4,4,4,4,4,2 r.Marshall 14,1,25 Zhanda Zhanda Zhanda Zhanda Zhanda 14.25 Zhanda Zhanda Zhanda Zhanda Zhanda 14,1,25 ZHAL ZHARE 14,1,25 Matthis Synofzik 5,6 Timothy W. Yu 8,18 Gregory Costain 1,2,9,10,19 * 1遗传学和基因组生物学方面的计划中心,莱顿,荷兰荷兰4神经病学科医院,生病儿童医院,多伦多,安大略省,加拿大安大略省5个神经退行性疾病的转化基因组学科,赫尔蒂临床脑研究和神经病学中心和神经病学中心
在过去的十年中,下一代测序(NGS)的突破导致全基因组中的OMICS数据的体积和复杂性增加(Bulk)(Bulk)(Lander等,2001; Venter等,2001),并且在单细胞水平上更深。NGS allowed the scienti fi c community to study various biological mechanisms such as genetics (whole- genome sequencing), gene expression (RNA-seq), and epigenetics [DNA methylation (e.g., whole-genome bisul fi te sequencing), chromatin accessibility (ATAC-seq), chromatin immunoprecipitation assays with sequencing (e.g., ChIP-seq对于组蛋白标记)]导致高维度数据(Reuter等,2015)。除了基因组范围的方法外,单细胞技术还提供了研究不同模态(例如基因表达(SCRNA-SEQ)和染色质可及性(SCATAC-SEQ))的机会(Heumos等人,2023年)。这项技术比大量数据显示出不同的优势,尤其是在捕获肿瘤微环境的克隆结构和细胞类型组成方面。此外,全球科学社区和财团,例如癌症基因组图集(TCGA)(TOMCZAK等人,2015年),国际癌症基因组联盟(ICGC)(国际癌症基因组等,2010),,Martens和Blueprint(Martens and Stunnenberg,2013),人类Cell Atlas(HCA)(HCA)(HCA)(LINDEN)(LIND),综合。每个人都可以通过发布OMICS数据和元数据提供相关的结果,从而为进一步的探索和数据集成提供了机会。但是,可以通过机器学习(ML)算法来分析大量复杂的OMIC数据,以发现生物标志物或预测性特征,以更好地患者分层和治疗选择。
从经济角度来看,学者和决策者长期以来一直将足够的基础设施服务供应是经济发展的关键要素。这对于增强非洲公司的竞争力并促进了非洲经济体和地区内部和各个地区的商品,服务,人员和信息的流动是必要的。因此,实现新的大陆和全球可持续发展目标的关键要素之一,即非洲联盟(AU)的2063年议程和2030年可持续发展目标议程(SDGS)挑战是基础设施。如今,如果目前的支出趋势继续下去,则几乎是2040年的全球基础设施投资中的五分之一(Reuter,2017年)。但是,全世界每年投资2.5万亿美元的基础设施以解决该问题(MGI,2016年)。然而,这一数额仍未达到世界上不断扩大的需求,这导致经济增长降低,并剥夺了公民的基本服务。要缩小支出差距,年度基础设施支出需要上升。世界需要在经济基础设施上投资于其GDP的3.8%,平均每年3.3万亿美元,以支持从2016年到2030年的预期增长率(MGI,2016年)。新兴经济体占其中60%的需求。但是,如果目前的投资不足的轨迹仍在继续,那么全世界将下降约11%,即每年3500亿美元(MGI,2016年)。在非洲,基础设施欠发达的基础设施仍然是对可持续发展的有约束力的约束。非洲国家对维持和扩展的关注不足
Miriam S Reuter, MD, Susan Walker, PhD, Bhooma Thiruvahindrapuram, MSc, Joe Whitney, MSc, Iris Cohn, MSc, Neal Sondheimer, MD, PhD, Ryan K C Yuen, PhD, Brett Trost, PhD, Tara A Paton, PhD, Sergio L Pereira, PhD, Jo‐Anne Herbrick, BSc, Richard Fintle, PhD, PhD, Merico, Aname, PhD, Jennifer, Jenniferr Howe, Jennifer R MacDonald, BSc, Chao, Chao, Chao, PhD, PhD, A PhD, PhD, PhD, Nalpathamkalam, PhD, Wilson, Wilson, Wilson. Pellecchia,PhD,John Wei,PhD,Lisa J. Strug,PhD,Sherilyn Bell,BSC,Barbara Kellam,Barbara Kellam,BSC,Melanie M Mahtani,PhD,Anne S Bassett,MD,MD,Yvonne Bombard,Phd,Phd,Phd,Rosanna Weksbard,Rosanna Weksberg,phd,phd,phd,coerl sheryl sheryl sheryl sheryl sheryl sheryl sheryl sharyl shumand d. MD,Dimitri J Stavoulos,博士,莎拉·鲍丁(Sarah Bowdin)博士,博士,博士,博士,博士,博士,博士,博士,博士,博士,博士,医学博士,医学博士,医学博士,医学博士,医学博士,医学博士,医学博士,医学博士,医学博士,医学博士,医学博士,sphd。博士,医学博士,博士,我的约瑟夫博士,博士,博士,MBA,MBA,MBA,MBA,MARC FUIM,PHD,PHD,PHD,CHISTIAL,CHISTIAL,CHISTIAL,CHISTIAN,CHISTIAN,CHISTIAN REVIES,CHISTIAN REVIES,PHD,JEAK DAVIES,MS,MS,MS,MS,MS,MS,MS,MS,MS,MS,MS,MS,MS,MS,MS,MS,MS,MS,MS,MS MS MS MS MS,MS,MS,MS,MS,MS,MS,医师Szego,PhD,Stephen Wcherer,PhD
艾伦·德·弗雷塔斯(Allan de Freitas),比勒陀利亚大学,扎夫·安东·库尔伯格(Zaf Anton Kullberg),Linkeoping大学,Swe Benjamin Noack,Otto von Guericke University Magdeburg,Ger Bernhard Krach,Airbus,Airbus,Ger Bharanidhar Duraisamy,Daimler Reeake,Daimler Reeaker,Daimler Re-Seear洛克希德·马丁(Lockheed Martin),盖尔·戴维·科马克(Ger David Cormack),莱昂纳多(Leonardo),英国迪特里希·弗朗肯(Dietrich Fraenken),亨索德(Hensoldt)传感器有限公司,格里安·普法夫(Ger Florian Pfaff),斯图加特大学,格尔·弗雷德·达姆(Ger Fred Daum),弗雷德里克·古斯塔夫森(Fredrik Gustafsson)迭戈州立大学,美国,美国西部林基大学,西波西米亚大学,西部波希米亚大学,西部波希米亚大学,西波西米亚大学,塞斯·耶稣·加西亚大学,卡洛斯大学Ger,劳罗·斯尼达罗大学(Lauro Snidaro University of Udine of Udine,Ita Lukas Buntkiel Fkie,Ger Micalis Vrigkas,西马其顿大学,Gre Mohammed Jahangir Uni-Versity,英国英国伯明翰,Murat Kumru,Murat Kumru,沃尔沃,TK Ondrej Straka,西波希米亚大学,Cze Patrick Hohher,Cze Patrick Hohher Streit,Metron,美国,美国Stefano Coraluppi,Str,美国Stephan Reuter,Robert Bosch Gmbh,Ger Thomas Henderson,犹他大学,美国蒂姆·鲍尔,蒂姆·鲍尔,htwg konstanz,gerumut orguner,中东技术大学
1。Priori,S。G.,Blomström-Lundqvist,C.,Mazzanti,A.,Blom,N.,Borggrefe,M.,Camm,J.,…Parkhomenko,A.(2015)。2015 ESC患者的心室心律失常患者管理和预防心脏突然死亡的指南,用于管理心室心律失常患者的工作组,并预防欧洲心脏病学会(ESC)的心脏突然死亡(ESC)由欧洲儿童和先天性心脏病学协会(AEPC)认可。欧洲心脏期刊,36(41),2793–2867。https://doi.org/10.1093/eurheartj/ehv316 2。Sanganalmath,S.K。,&Bolli,R。(2013)。心力衰竭细胞疗法:实验和临床研究,当前挑战以及未来方向的全面概述。循环研究,113(6),810–34。https://doi.org/10.1161/circresaha.113.300219 3。Koudstaal,S.,Lorkeers,S.J.,Gaetani,R.,Gho,J.M.I.H.(2013)。简洁的评论:心脏再生和心脏干细胞的作用。干细胞转化医学,2,434–43。https://doi.org/10.5966/sctm.2013-0001 4。B.与兔子窦节点相比,豚鼠窦节点的功能和形态组织。分子和细胞心脏病学杂志,17(6),549–64。5。Bleeker,W。K.,Mackaay,A。J. C.,Masson-Pévet,M.,Bouman,L。N.和Becker,A。E.(1980)。兔子鼻窦节点的功能和形态组织。循环研究,46(1),11-22。https:// doi。org/10.1161/01.RES.46.1.11 6。Semelka,M.,Gera,J。,&Usman,S。(2013)。病态的窦综合症:评论。美国家庭医师,87(10),691–696。7。Glikson,M.,Nielsen,J.C.,Kronborg,M.B.,Michowitz,Y.,Auricchio,A.,Barbash,I.M.,…Tolosana,J.M。(2021)。2021 ESC心脏起搏和心脏重新同步治疗指南由欧洲心脏病学会(ESC)的心脏起搏和心脏重新同步治疗工作组开发,并由欧洲心律协会(EHRA)的特殊贡献。 欧洲心脏期刊,42(35),3427–3520。 https://doi.org/10.1093/eurheartj/ehab364 8。 Thambo,J。 B.,Bordachar,P.,Garrigue,S.,Lafitte,S.,Sanders,P.,Reuter,S.,…Jimenez,M。(2004)。 先天性完全心脏阻滞和慢性右心顶起搏的患者的有害的心室重塑。 循环,110(25),3766–3772。 https://doi.org/10.1161/01.cir.0000150336.86033.8d 9。 TSE,H.-F.,Xue,T.,Lau,C.-P.,Siu,C.-W.,Wang,K.,Zhang,Q.-Y. (2006)。 通过工程起搏器HCN通道的体内基因转移构建的生物人工鼻窦节点降低了病态的Sinus综合征模型中对电子起搏器的依赖性。 循环,114(10),1000–11。 https:// doi。 org/10.1161/CirculationAha.106.615385 10。 Chan,P。K. W.,Geng,L.,Gao,Y.,Keung,W。,&Li,R。A.2021 ESC心脏起搏和心脏重新同步治疗指南由欧洲心脏病学会(ESC)的心脏起搏和心脏重新同步治疗工作组开发,并由欧洲心律协会(EHRA)的特殊贡献。欧洲心脏期刊,42(35),3427–3520。https://doi.org/10.1093/eurheartj/ehab364 8。Thambo,J。B.,Bordachar,P.,Garrigue,S.,Lafitte,S.,Sanders,P.,Reuter,S.,…Jimenez,M。(2004)。 先天性完全心脏阻滞和慢性右心顶起搏的患者的有害的心室重塑。 循环,110(25),3766–3772。 https://doi.org/10.1161/01.cir.0000150336.86033.8d 9。 TSE,H.-F.,Xue,T.,Lau,C.-P.,Siu,C.-W.,Wang,K.,Zhang,Q.-Y. (2006)。 通过工程起搏器HCN通道的体内基因转移构建的生物人工鼻窦节点降低了病态的Sinus综合征模型中对电子起搏器的依赖性。 循环,114(10),1000–11。 https:// doi。 org/10.1161/CirculationAha.106.615385 10。 Chan,P。K. W.,Geng,L.,Gao,Y.,Keung,W。,&Li,R。A.B.,Bordachar,P.,Garrigue,S.,Lafitte,S.,Sanders,P.,Reuter,S.,…Jimenez,M。(2004)。有害的心室重塑。循环,110(25),3766–3772。https://doi.org/10.1161/01.cir.0000150336.86033.8d 9。TSE,H.-F.,Xue,T.,Lau,C.-P.,Siu,C.-W.,Wang,K.,Zhang,Q.-Y. (2006)。 通过工程起搏器HCN通道的体内基因转移构建的生物人工鼻窦节点降低了病态的Sinus综合征模型中对电子起搏器的依赖性。 循环,114(10),1000–11。 https:// doi。 org/10.1161/CirculationAha.106.615385 10。 Chan,P。K. W.,Geng,L.,Gao,Y.,Keung,W。,&Li,R。A.TSE,H.-F.,Xue,T.,Lau,C.-P.,Siu,C.-W.,Wang,K.,Zhang,Q.-Y.(2006)。生物人工鼻窦节点降低了病态的Sinus综合征模型中对电子起搏器的依赖性。循环,114(10),1000–11。https:// doi。org/10.1161/CirculationAha.106.615385 10。Chan,P。K. W.,Geng,L.,Gao,Y.,Keung,W。,&Li,R。A.Chan,P。K. W.,Geng,L.,Gao,Y.,Keung,W。,&Li,R。A.(2017)。AAV介导的人类的转换