屏状核(CLA)是位于岛叶皮质和纹状体之间的一簇神经元。许多研究表明,CLA 在高级大脑功能中起着重要作用。此外,越来越多的证据表明 CLA 功能障碍与神经心理症状有关。然而,CLA 在发育过程中是如何形成的尚不完全清楚。在本研究中,我们分析了 CLA 的发育,特别关注了雌雄小鼠中 CLA 神经元的迁移情况。首先,我们发现 CLA 神经元是在胚胎第 10.5 天和第 12.5 天之间产生的,但大部分是在第 11.5 天产生的。接下来,我们使用 FlashTag 技术标记了在 E11.5 出生的 CLA 神经元,并发现大多数神经元在 E13.5 时到达大脑表面,但在 1 天后的 E14.5 时分布在 CLA 深处。GFP 标记细胞的延时成像显示,一些 CLA 神经元首先向外径向迁移,然后在到达表面后改变方向向内迁移。此外,我们证明了 Reelin 信号对于 CLA 神经元的适当分布是必需的。发育中的 CLA 神经元从向外迁移到“反向”迁移的转变与其他迁移模式不同,在其他迁移模式中,神经元通常沿某个方向迁移,即简单的向外或向内。未来对 CLA 发育特征和精确分子机制的阐明可能会为 CLA 独特的认知功能提供见解。
简介:FM 收音机是一个非常有趣的话题!我听不清楚妈妈在厨房跟我说话。有些是选择性听力的一部分,特别是当她问作业的时候。但我能听到有人在全国各地现场唱歌。解释一下!我们 Srivastha 和 Soham 都是音乐系的学生。因此,通过无线电波传输的声音显然是一个令人着迷的课题。声音如何在如此长的距离内传输而不损失其质量?理论:我们将理论理解为声波首先由幅度或频率 (AM 或 FM) 调制,然后使用高功率天线传输。FM 接收器是一个微型电子电路,能够接收 FM 信号,消除噪音,然后放大并将其转换为人类可以听到的音频范围。我们想尝试从头开始构建它并亲自测试它的工作原理。什么是 FM 发射器?FM 发射器是一种使用非常低的功率运行并使用(频率调制)FM 波传输声音的电路。借助此类 FM 发射器,我们可以轻松地通过不同频率的载波长距离传输音频信号。这就是广播电台/塔的作用。载波的频率与具有幅度的音频信号的频率相同。FM 发射器产生从 88 HZ 到 108 MHZ 的 VHF 范围。
本文是在供应链三个不同领域中审查和分类文献的首次尝试,包括:绿色供应链(GSC),封闭环路供应链(CLSC)和反向供应链(RSC),它们部分相互联系。出于这个原因,这三个主题中的每个主题都被分为几个标准,每个标准都是对几个类似问题的回顾。这项研究的目的是:阐明在提到的供应链管理的三个提到的研究人员的调查中经历了不同领域;显示绿色供应链管理,闭环,供应链管理和反向供应链管理的差异和相似性;在这三个领域为研究人员提供未来的研究方向。这项研究试图通过审查其他研究并将其汇总到部分。第一部分将讨论已完成的操作,第二部分正在审查发现的内容。查找还讨论了这三个主题及其界限的所作所为,以及对未来工作的建议(可以做什么)。
1个生物科学学院,美国佐治亚州亚特兰大佐治亚理工学院; 2德克萨斯州A&M大学电气与计算机工程系,美国德克萨斯州大学车站; 3韩国Suwon Sungkyunkwan大学生物医学工程系; 4美国马里兰州巴尔的摩市约翰·霍普金斯大学医学院神经科学系和肯尼迪·克里格研究所; 5乔治·W·伍德拉夫机械工程学院,美国佐治亚州亚特兰大佐治亚理工学院; 6佐治亚州的手,肩膀和肘部,美国佐治亚州亚特兰大; 7坦普尔大学,美国宾夕法尼亚州费城; 8塔夫茨大学医学院,美国马萨诸塞州波士顿; 9 Poly-Orth International,美国马萨诸塞州沙龙; 10电气和计算机工程和华莱士H. Coulter系生物医学工程系,乔治亚州佐治亚州亚特兰大市佐治亚州乔治亚州;美国宾夕法尼亚州伯利恒的Lehigh University的生物工程和电气和计算机工程系的11个部门
摘要:实验证据表明,活性氧 (ROS) 的生成参与了缺氧诱导因子 (HIF)-1 α 的缺氧稳定以及随后肿瘤侵袭性和转移扩散促进剂的表达。然而,线粒体 ROS 在缺氧诱导的上皮间质转化 (EMT) 激活中的作用仍不清楚。本研究旨在验证以下假设:抑制缺氧诱导的线粒体 ROS 生成(主要在线粒体复合物 III UQCRB 位点)可能导致 EMT 逆转,此外还会导致 HIF-1 α 稳定性降低。通过评估乳腺癌细胞在用抗氧化剂处理 48 小时后对 ROS、HIF-1 α 和 EMT 标志物的水平,评估了缺氧诱导的 ROS 增加在 HIF-1 α 稳定性中的作用以及抗氧化剂(其中一些直接针对线粒体复合物 III)阻断 ROS 产生和 HIF-1 α 稳定性并防止 EMT 标志物变化的能力。还通过 RNA 干扰沉默其表达并评估其下调对 ROS 产生、HIF-1 α 水平和 EMT 标志物的影响来评估 UQCRB 在缺氧诱导的 EMT 中的具体作用。我们的结果证实了 UQCRB 在缺氧信号诱导 EMT 中的关键作用。因此,UQCRB 可能是开发能够通过阻断线粒体 ROS 产生来逆转 EMT 的药物的新治疗靶点。
摘要:将量子信息确定性地加载到量子节点上是迈向量子网络的重要一步。本文,我们证明具有最佳时间波形的相干态微波光子可以有效地加载到半无限一维 (1D) 传输线波导中的单个超导人造原子上。使用具有指数上升波形的弱相干态(脉冲中包含的光子数 (N) ≪ 1),其时间常数与人造原子的退相干时间相匹配,我们证明从 1D 半自由空间到人造原子的加载效率为 94.2% ± 0.7%。高加载效率归因于时间反转对称性:入射波和时间反转的发射波之间的重叠高达 97.1% ± 0.4%。我们的研究结果为实现基于波导量子电动力学的量子网络开辟了有希望的应用。关键词:量子网络,光子加载,波导量子电动力学,超导人工原子Q
近年来,可再生能源 (RES) 的广泛传播促使学术界和工业界研究能够更好地利用可再生能源发电来供应能源系统的方法和技术。在文献中,人们研究了不同的技术来管理可再生能源发电并优化其运行。风能和太阳能等可再生能源变化多端且难以预测,因此人们开发了许多随机算法来最佳地管理其预测中的不确定性。为了处理可再生能源预测误差和电力需求的不确定性,并获得电力系统的灵活性,即系统发电机对负载或系统组件性能的意外变化做出反应的能力,必须集成储能系统 (ESS) [1]。电池等电化学储能系统得到了广泛的研究,文献中可以找到许多关于电池管理的著作 [2]。一种有效且环保的电池替代品是电转氢 (P2H) 系统,其中可能的发电过剩通过
深度学习已重新定义了人工神经网络的兴起,这是受到大脑神经元网络的启发。多年来,AI和神经科学之间的这些相互作用为这两个领域带来了巨大的好处,从而使神经网络可以在大量应用中使用。神经网络使用反向分化的有效实现,称为反向传播(BP)。然而,这种算法通常因其生物学上的不可使用性而受到批评(例如,缺乏众议员的本地更新规则)。因此,越来越多地研究了依靠预测性编码(PC)的生物学上合理的学习方法,即描述大脑中信息处理的框架。最近的著作证明,这些方法可以将BP近似于多层感知器(MLP)的一定余量,并在任何其他复杂模型上均非渐近,并且PC的变量零差异推理学习(Z-IL)能够准确地在MLP上实现BP。然而,最近的文字还表明,尚无生物学上合理的方法,可以准确地复制BP在Complex模型上的重量更新。为了填补这一空白,在本文中,我们通过在计算图上直接定义它来概括(PC和)Z-IL,并表明它可以执行精确的反向分化。什么结果是第一个PC(并且在生物学上是合理的)算法,它等同于BP在任何神经网络上更新参数,从而在神经科学和深度学习的构图研究之间提供了桥梁。此外,以上结果尤其是立即提供了BP的新型局部和平行实现。
摘要。背景/目的:P-糖蛋白 (P-gp) 和乳腺癌耐药蛋白 (BCRP) 的过度表达与胶质母细胞瘤 (GBM) 的多药耐药性有关。尽管之前研究的药物外排泵广谱抑制剂由于体内毒性而未能在临床研究中取得进展,但仍需要研究临床上可行的靶向抑制剂。本研究评估了 Ko143(一种无毒的 fumitremorgin C 类似物)对替莫唑胺 (TMZ) 在耐药胶质母细胞瘤干细胞中的疗效的影响。材料和方法:我们使用 ATP-Glo 测定法确定细胞活力,并使用流式细胞术进行细胞周期分析。通过 RT-qPCR 分析比较基因表达。结果:当与 Ko143 联合使用时,TMZ IC 50 在耐药表型中降低了 41.07%(p<0.01)。此外,TMZ 耐药表型 (GBM146) 的 P-gp 表达比 TMZ 敏感表型 (GBM9) 高 44 倍 (p<0.01),而 BCRP 表达则低 0.6 倍。Ko143 增强了 TMZ 的疗效,并且可能比之前表明的更有效地抑制 P 糖蛋白。结论:进一步开发用于联合化疗的无毒、靶向药物外排泵抑制剂可能会改善胶质母细胞瘤患者的预后。
RO 系统可以显著减少总溶解固体 (TDS)、重金属以及无机和有机污染物。RO 系统有多种类型,大小和用途各不相同。使用点 (POU) 系统连接到单个水龙头或设备并从中提供处理过的水。入口点 (POE) 系统连接到进入房屋或建筑物的供水系统,因此可以处理建筑物中大多数或所有最终用途的水。POU 和 POE 系统均可用于住宅和商业环境。还有更大的 RO 系统用于海水淡化或工业或市政用水和废水处理等应用。这些较大的系统根据其预期应用具有特定的考虑和要求,并不是本通知的重点。对于本文档的其余部分,术语 RO 系统是指 POU 和 POE RO 系统,除非明确指明任一类型。