美国政府 (USG) 对人工智能 (AI) 的国家安全影响越来越感兴趣。在本报告中,我们提出以下问题:鉴于国家安全问题,美国政府可能如何影响 AI 的研究、开发和部署——无论是在美国国内还是国外?我们对当前法律框架内美国政府的一些政策杠杆进行了通俗易懂的概述。对于每个杠杆,我们描述其起源和立法基础以及过去和现在的用途;然后我们评估其未来应用于 AI 技术的可行性。按照用于明确国家安全目的的可能性降序排列,我们涵盖了以下政策杠杆:联邦研发支出、外国投资限制、出口管制、签证审查、延长签证途径、保密令、出版前审查程序、国防生产法、反垄断执法和“天生秘密原则”。
摘要3 1简介3 1.1 SWE的定义3 1.2 SWE估算的意义和动机4 1.3当前的操作SWE监视5 1.3.1地面测量6 1.3.2模型产品7 1.4 ML 9 1.5当前挑战9 2。SWE估计方法的历史发展10 2.1经验方法10 2.2基于物理的方法11 2.3数据驱动方法13 3.当前基于机器学习的SWE估计研究15 3.1早期努力(2000-2014)15 3.2最新技术(现状)(现状)(2014年至今)18 4。ml福利和瓶颈20 5。讨论和未来方向26 5.1 SWE的广义AI 26 5.2 SWE的自学习剂26 5.3将SWE AI纳入较大的地球AI模型27 6.结论28作者贡献28致谢28资金28参考28
本综述介绍了A 2 M 3 O 12和相关陶瓷家族中的材料历史,包括它们的异常热膨胀及其对机制的当前理解,以及相关因素,例如水平镜和单斜骨对正常相位过渡。在当前的知识,挑战和应用机遇方面介绍了其他特性,包括热机械,热和离子传导以及光学特性。最大的挑战之一是整体的生产,总结了整合和烧结的各种方法。这些陶瓷与其他材料相结合时具有很大的希望,并且提出了此类复合材料的最新进展。这些问题是在负和接近零热扩展陶瓷的潜在应用的背景下,这仍然对未来的材料研究人员面临挑战。
要查看此改进的明确证据,我们要求PG&E提供一份清单,以显示其新模型如何改变其缓解措施的地理目标。尽管他们无法提供此信息,但PG&E描述了使用该模型的内部过程。长期计划过程依赖于主题专家(SME)来制定降低风险措施,并且在共享和讨论模型结果的风险建模团队与中小型企业之间进行了多次会议和讨论。但是,PG&E没有保留任何正式的前后记录,无法清楚地证明对建议或建造的模型影响。使用中小企业制定缓解措施与公用事业行业的标准实践一致,用于制定分配风险措施。
疲劳的客观测量在职业健康和安全等领域至关重要,因为疲劳会损害认知和运动能力,从而降低生产力并增加受伤风险。可穿戴系统代表了疲劳监测的极具前景的解决方案,因为它们能够在无人值守的环境中持续、长期监测生物医学信号,同时具有所需的舒适度和非侵入性。这是开发实时疲劳监测准确模型的先决条件。然而,通过可穿戴设备监测疲劳带来了独特的挑战。为了概述目前通过可穿戴设备监测与疲劳相关的变量的最新技术,并发现当前知识中的潜在差距和缺陷,进行了系统回顾。在 Scopus 和 PubMed 数据库中搜索了自 2015 年以来以英文发表的文章,标题中包含术语“疲劳”、“困倦”、“警觉”或“警觉”,并提出了基于可穿戴设备的非侵入性疲劳量化系统。在检索到的 612 篇文章中,60 篇满足纳入标准。纳入的研究主要是短期研究,且在实验室环境中进行。总体而言,研究人员根据运动(MOT)、脑电图(EEG)、光电容积图(PPG)、心电图(ECG)、皮肤电反应(GSR)、肌电图(EMG)、皮肤温度(T sk )、眼球运动(EYE)和呼吸(RES)数据开发疲劳模型,这些数据均由市场上的可穿戴设备获取。在提出的疲劳量化方法中,监督机器学习模型(更具体地说是二元分类模型)占主导地位。这些模型在检测疲劳方面被认为表现非常出色,然而,在模型开发过程中几乎没有努力确保使用高质量的数据。总之,本综述的结果表明,方法上的局限性阻碍了大多数提出的疲劳模型的普遍性和现实世界的适用性。还需要开展更多的工作来充分探索可穿戴设备在疲劳量化方面的潜力,以及更好地理解疲劳与生理变量变化之间的关系。
摘要。飞机燃气轮机发动机的开发已广泛用于开发高级材料。然而,这种复杂的开发过程是通过减少体重,更高的温度能力和/或降低冷却来证明的,每种都会提高效率。这是高温陶瓷取得了很大进步的地方,陶瓷基质复合材料(CMC)在前景中。CMC分为非氧化物和基于氧化物的CMC。两个家庭的材料类型具有很高的潜力,可以在高温推进应用中使用。典型的基于氧化物的基于氧化物纤维和氧化物基质(OX-OX)。一些最常见的氧化物子类别是氧化铝,绿地,陶瓷和氧化锆陶瓷。这样的基质复合材料例如在燃气轮机发动机和排气喷嘴的燃烧衬里中使用。然而,直到现在,尚未就此类应用的可用基于氧化物的CMC进行彻底的研究。本文着重于评估有关机械和热性能的可用氧化陶瓷基质复合材料的文献调查。
能源有两种类型:可再生能源和不可再生能源。不可再生能源包括煤炭、天然气和石油。不可再生能源依靠燃烧化石燃料来产生能量。这些能源的特点是易于使用,随处可见。但这些能源存在耗时长、燃烧时产生大量二氧化碳以及对员工健康存在一定风险的问题。可再生能源通常被称为清洁能源,来自不断补充的自然资源或过程。可再生能源的一些例子包括太阳能、1-3 风能、4-6 水力发电、7 地热能、8 生物质能、9 和燃料电池。10-12 这些可再生能源具有以下优势:可持续性、低维护要求、众多健康和环境效益。相比之下,这些能源的前期成本较高、间歇性、存储能力和地理限制。13-15
引言 2019 冠状病毒病 (COVID-19) 是一种由严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 引起的高度传染性疾病,2019 年 12 月,中华民国 (PRC) 武汉报告了首例该病病例。 [1] 截至 2021 年 1 月 23 日,全球已报告 9200 万例 COVID-19 确诊病例,超过 206 万人死于 COVID-19,并已在世界各地引发了巨大的心理、社会、人口和经济危机。 [2,3] 为防止 SARS-CoV-2 进一步传播,必须采取广泛检测、全国封锁、保持社交距离和严格隔离感染者等深远措施。然而,采取这些旨在遏制的预防措施并不是一件容易的事。 [4] 冠状病毒的持续传播凸显了全球努力开发疫苗和治疗方法的重要性。此外,恢复正常似乎取决于
摘要:人工智能在日常生活中的应用变得无处不在且不可避免。在那个广阔的领域,一个特殊的位置属于用于多参数优化的仿生/生物启发的算法,该算法在许多区域中找到了它们的使用。新颖的方法和进步正在以加速速度发表。因此,尽管事实上有很多调查和评论,但它们很快就变得过时了。因此,与当前的发展保持同步非常重要。在这篇综述中,我们首先考虑了生物启发的多参数优化方法的可能分类,因为专门针对该领域的论文相对较少,而且通常是矛盾的。我们通过详细描述一些更突出的方法以及最近发表的方法来进行。最后,我们考虑在两个相关的宽域中使用仿生算法的使用,即微电子(包括电路设计优化)和纳米光子学(包括诸如光子晶体,纳米质体的构造和水流的结构的逆设计(包括逆设计)。我们试图保持这项广泛的调查独立,以便不仅可以使用相关领域的学者,还可以使用对这个有吸引力领域的最新发展感兴趣的所有人。
