“本指南非常全面地概述了大学研究人员和技术转让专业人员的激励措施。由于它借鉴了发达国家和发展中国家的案例,因此对大学(尤其是发展中国家的大学)的技术转让做出了独特而宝贵的贡献,从而为该主题提供了一种极好的平衡方法。许多发展中国家正更加重视将其经济转变为知识驱动型,并将大学视为与整个行业和整个社会合作的主要参与者。它为技术转让在这种转变中的重要性提供了一个令人信服的案例,同时熟练地解决了技术转让这一复杂问题。它进一步阐述了技术转让激励措施的利弊,并提出了缓解干预措施以解决弊端。指南的最后一部分提供了其他部分所涵盖的各个方面的快速参考,以及推出激励计划的简明建议。我强烈推荐这本指南,不仅适合大学领导、技术转让办公室和技术转让专业人员,更重要的是,适合政策制定者,因为它将是创造有利政策环境的绝佳伴侣。”
抽象人类的前额叶和岛屿区域如何相互作用,同时最大程度地提高奖励和微型惩罚是未知的。利用人类的颅内记录,我们证明,与地方代表相比,相互作用可以更好地解散奖励或惩罚学习的功能特异性。前额叶和岛状皮质表现出非选择性神经种群以奖励和惩罚。非选择性响应会引起上下文 - 特定的核次间相互作用。我们确定了一个奖励子系统,具有眶额和腹侧前额叶皮层之间具有冗余相互作用的奖励子系统,后者的驱动作用。此外,我们发现了一个惩罚子系统,在岛屿和背外侧皮质之间具有多余的相互作用,并具有岛屿的驱动作用。最后,在奖励和惩罚学习之间切换是由两个子系统之间的协同互动介导的。这些结果提供了分布式皮质表征和支持奖励和惩罚学习的统一解释。
在过去的 20 年中,越来越多的脑成像研究探讨了人类奖赏动机背后的机制。本综述描述了与奖赏动机相关的神经机制及其与健康人类参与者的认知功能的关系的研究。众所周知,人类大脑的中脑边缘多巴胺奖赏回路控制着人类的奖赏动机行为。内侧和外侧前额叶皮层 (PFC) 在决策过程中整合动机和认知控制,而背外侧 PFC (dlPFC) 整合并传输奖赏信号至中脑边缘和中脑皮层多巴胺回路并启动激励行为。丘脑和岛叶影响人类的激励处理,而运动系统在响应动作控制方面发挥作用。奖赏动机、学习、记忆、想象、工作记忆和注意力之间存在相互关系。评估奖赏动机的最常用方法是金钱激励延迟任务 (DMRT),并且有几项针对该范式的荟萃分析。基因调节动机奖励,多巴胺为动机和认知控制之间的相互作用提供了基础。有证据表明,男性青少年比女性青少年做出更多冒险的决定,并且腹侧纹状体中奖励相关的 DA 释放的侧化仅限于男性。这些研究对我们理解自然奖励和成瘾、抑郁和 ADHD 等精神疾病具有重要意义。此外,奖励和记忆之间的关联有助于开发干扰记忆巩固的药物成瘾治疗技术。最后,缺乏关于奖励动机、遗传学和性别差异的研究,这可以提高我们对奖励、动机和大脑之间关系的理解。
我们研究了由奖励机器编码的任务的加强学习问题。在环境中的一组属性(称为原子命题)中定义任务,并由布尔变量代表。文献中常用的一个不切实际的假设是,这些命题的真实价值是准确的。在实际情况下,这些真实价值观尚不确定,因为它们来自不完美的传感器。同时,奖励机可以很难明确地建模,尤其是当它们编码复杂的任务时。我们开发了一种增强学习算法,该算法会渗透到奖励机器,该奖励机器在学习如何执行它的同时编码了基本任务,尽管命题的真实价值是不确定的。为了解决此类不确定性,该算法对原子命题的真实价值保持了概率估计;它根据环境探索到达的新感官测量结果来更新此估算。另外,该算法维护了一个假设奖励机,该奖励机是对编码要学习的任务的奖励机器的估计。在代理商探索环境时,该算法根据获得的奖励和原子命题的真实价值的奖励和提议来更新假设奖励机。最后,该算法对假设奖励机的状态使用Q学习过程来确定完成任务的最佳策略。我们证明,该算法成功地侵入了奖励机,并渐近地学习完成各自任务的政策。
摘要 - 在计算知识的领域中,知识图推理(KG-R)位于促进多种领域的促进复杂的推论能力的前端。这项研究的精髓旨在实现强化学习的使用(RL)策略,尤其是增强算法,以浏览多跳kg-r中固有的内在物质。这项调查批判性地解决了知识图(kgs)固有的不完整所带来的普遍挑战,这些挑战经常导致错误的推论结果,表现为虚假负面因素和误导性的阳性。通过将大学的医学语言系统(UMLS)分区分为富且稀疏的子集,我们研究了预训练的BERT嵌入式的功效,并促使学习方法来完善奖励成型过程。这种方法不仅提高了多跳kg-r的精度,而且为该领域的未来研究树立了新的先例,旨在提高复杂KG框架内知识推断的鲁棒性和准确性。我们的作品对KG推理的论述有了新的观点,提供了一种方法上的进步,该进步与自然期刊的学术严谨和学术愿望保持一致,并有望在计算知识表示领域中进一步发展。索引术语 - 知识图推理,强化学习,奖励成型,转移学习
已经假设抽象的不同大脑系统来处理8个竞争以产生行为的“专家”。在增强学习中,两个通用过程,一个无模型的9(MF)和一个基于模型的(MB),通常被建模为代理(MOA)的混合物(MOA)和10个假设,以捕获自动性与审议之间的差异。但是,静态MOA无法捕获11个策略的变化。为了研究这种动态,我们提出了12个代理的隐藏马尔可夫模型(MOA-hmm),同时从一组代理中学习了13个动作值,以及基本“隐藏”的时间动态,即随着时间的推移,代理贡献中14个捕获转移。将此模型应用于大鼠的多步,15个奖励指导的任务,揭示了会议内策略的进展:从最初的16 MB探索到MB剥削,并最终降低了参与度。被推论的状态17预测任务过程中响应时间和OFC神经编码的变化,这表明18个状态正在捕获动力学的实际转移。19
媒体与传播部,LMU慕尼黑,慕尼黑,德国,B大学,Lapsyd´ E,CNR,CNRS,CNRS,Sorbonne Paris Cit´e,法国,法国,C c in信息技术与传播学院,坦佩雷大学,PORI,PORI,PORI,PORI,芬兰,教育和文化学院,教育和文化,Tampery,Tampery,Tampere,Tampere,Tampere,tampere,tampere,Finland Entical,Finland Entical,Finland Entical,Finland Entical,Finland Entical,Finland Entical,Finland Entical,Finland e Contigh大学,拉夫堡大学,英国,Frankany g的个人发展和自适应教育中心,德国G神经病学中心,神经心理学部,赫尔蒂·纳斯特·临床脑研究所神经心理学科,图宾根,德国Tübingen大学,德国Tübingen大学,h h。德国Tuebingen大学的研究生院和研究网络K Leibniz-InstitutFürWissensMedien,德国Tübingen,德国
奖励的自适应编码是神经元对可用补偿背景的反应的过程。较高的奖励会导致更强的大脑反应,但是响应的增加取决于可用奖励的范围。在狭窄范围内观察到更陡峭的增加,并且在更广泛的范围内逐渐逐渐增加。在精神分裂症中,自适应编码似乎在不同领域,尤其是在奖励领域中受到影响。在这里,我们测试了大量精神分裂症患者(n = 86)和对照组(n = 66)的奖励的自适应编码。我们评估了:(i)自适应编码缺陷和症状之间的关联; (ii)缺陷的纵向稳定性(相同的任务相同3个月); (iii)两个实验部位之间结果的稳定性。我们使用功能性MRI和货币激励延迟任务来评估参与者对两个不同的奖励范围的适应:狭窄范围和广泛范围。我们使用利率分析来评估纹状体和视觉区域内的适应性。患者和对照受试者接受了全面的人口统计和临床评估。我们发现患者的自适应编码降低,在狭窄的奖励范围内,相对于对照参与者,纹状体但没有视觉区域的奖励范围降低。在两个研究地点都观察到了这种模式。进行重新测试后,患者增加了狭窄的斜率,显示了改善的自适应编码,而对照受试者则略微降低了它们。在重新测试时,狭窄范围内斜坡过高的患者也显示出更高水平的负症状。我们的数据证实了精神分裂症奖励适应的缺陷,并揭示了患者实践的影响,从而改善了改善,重新测试时坡度较高。但是,在某些患者中,由于大脑反应的早期饱和,坡度过高可能导致更大的奖励可区分性。一起,在新的(第一次接触,适应不足)和更熟悉的(重新测试,过度适应)情况下丧失奖励表示的损失可能会导致精神分裂症的多种动机症状。
摘要 - 增强学习(RL)在通过州行动 - 奖励反馈循环中优化多车合作驾驶策略的巨大潜力,但它仍然面临着诸如低样本效率之类的挑战。本文提出了一种基于稳态过渡系统的差异奖励方法,该方法通过分析交通流量特征将国家过渡梯度信息纳入奖励设计中,旨在优化多车辆合作决策中的行动选择和政策学习。在不同的自动驾驶汽车渗透率下,在RL算法(例如Mappo,MADQN和QMIX)中验证了所提出的方法的性能。结果表明,在交通效率,安全性和行动合理性方面,差异化奖励方法显着加速了培训的融合,并优于核心奖励和其他方面的奖励。此外,该方法表现出强大的可扩展性和环境适应性,为在复杂的交通情况下制定多机构合作决策提供了一种新颖的方法。
引言在治疗肥胖症的饮食方法中(1),针对饮食脂肪和碳水化合物(可引发不同外周代谢和内分泌状态的常量营养素(2))的策略的受欢迎程度时高时低。饮食中碳水化合物和脂肪的摄入也会影响大脑多巴胺(3-5)的不同肠脑通路,啮齿动物模型已证明多巴胺是饮食行为(6)和体重调节(7)不可或缺的一部分。虽然多巴胺是享乐行为的基础,但食物的强化特性仅部分由对愉悦本身的有意识的感官知觉介导。相反,食物奖励主要由来自潜意识过程的信号决定,这些信号检测营养线索以调节纹状体区域的多巴胺信号(8),这些区域不仅涉及享乐反应,还涉及动机行为、强化学习、习惯养成和强迫行为(6,9)。因此,大脑多巴胺的变化可能会影响食物选择和饮食行为。肥胖人群的多巴胺合成能力可能降低 (10–12),而纹状体 2/3 型多巴胺受体结合潜能 (D2BP) 的可用性可能与肥胖相关 (13–15)。大脑多巴胺还与人类饮食行为 (13、16–18) 和食物奖励处理 (19) 有关,且与体重无关。限制碳水化合物和脂肪的饮食是否会对人类大脑多巴胺和饮食行为产生不同的影响尚不清楚。在这里,我们使用正电子发射断层扫描 (PET) 测量 D2BP,并使用功能性磁共振成像 (fMRI) 测量 17 名肥胖成年人对视觉食物提示作出反应的神经活动。我们预先设定的目标是调查与正常热量基线饮食相比,5 天的选择性限制饮食脂肪或碳水化合物是否会对大脑奖励区域对视觉食物提示作出反应的 D2BP 和神经活动产生不同的影响。