摘要 本文介绍了几种压控振荡器的物理实现和测量结果,这些振荡器采用全自动、布局和可变性感知的优化方法设计而成。该方法使用基于机器学习技术的高精度模型来表征电感器,并使用多目标优化算法来实现包含最佳电路设计的帕累托最优前沿,这些电路设计可提供不同的性能权衡。所提出方法的最终结果是一组设计解决方案(其 GDSII 描述可用且可随时制造),无需设计师进一步干预。所提出方法的两个关键要素是使用与现成模拟器和电感器模型链接的优化算法,它们可产生类似 EM 的精度,但评估时间要短得多。此外,该方法保证了对布局寄生和可变性的高水平稳健性,与专家设计师使用其可用的验证工具实现的一样。该方法独立于技术,可用于射频电路的设计。结果已通过物理原型上的实验测量进行验证。
I. 引言为了满足未来高频电子器件的需求,开发新的技术方法十分必要。在集成方面,主要要求是能够制造复杂的二维和三维微型结构以及混合电介质材料和金属。LTCC(低温共烧陶瓷)[1] 是一种可行的方法。它允许使用低温烧制陶瓷材料和高电导率金属(金、银)。但该技术存在一些局限性:用 LTCC 制造的组件是通过堆叠单条带制成的,因此限制了可实现的几何形状(2.5-D 配置而不是真正的 3-D)。盲孔、沟槽或金属壁不易制作(即使提出了接近的解决方案,例如用过孔栅栏代替金属壁)。此外,混合电介质材料极其困难。立体光刻技术(SL)在特定约束下实现了这一目标。后者包括制造复杂的 3D 组件 [2-4]。到目前为止,该技术基于一种电介质制造,尚无法在单个制造步骤中将金属和电介质材料组合在一起。喷墨打印技术的最新进展使得在一步制造中实现复杂的金属电介质结构 [5-7]。使用这种方法,我们旨在制造创新的高频元件,以获得紧凑性、性能和设计灵活性。我们必须面对的挑战之一是优化一种可以在低温(~900°C)下固化的电介质墨水,从而与银纳米颗粒墨水等高电导率金属墨水兼容。在此背景下,本文介绍了两种基于陶瓷的添加剂技术:(1)喷墨打印方法,首先对基于银纳米颗粒和低温烧制陶瓷材料墨水的多材料和多层组件进行打印测试。(2)一种专用于 RF 组件制造的基于陶瓷的 SL 技术。如图所示,喷墨打印和 SL 技术都是未来 RF 组件的替代技术的候选。II。喷墨技术 A. 喷墨打印原理 该技术基于不同材料薄层的叠加以构建 2D 或 3D 组件,使用多喷嘴压电打印头在基板上输送精确体积的墨滴(几 pL)(图 1)。
首先,我们没有采取足够果断的措施来整合我们的项目活动。21 世纪世界面临的主要问题中,很少有问题能通过“联合利华”的方法解决。这些问题是由不熟悉的元素组成的大杂烩,需要多学科、多角度的方法。许多挑战之所以成为“问题”,正是因为它们违背了现有机构格局的传统分类。在过去十年中,我们以基金会的部门结构为基础,主要致力于加强项目内容。现在可能是时候重新安排强化的项目组成部分,采用一种更加面向问题的方法。例如:基金会是否应该设立农业科学部门、健康科学部门或全球环境部门,或者是否应该设立一个多学科工作组,致力于解决水资源、农田以及如何在不破坏环境的情况下养活世界人口的问题?
Hytera 的 BD302 双向无线电是一款紧凑型设备,可通过易于操作的方式提供专业通信。如今,通信工具是提高效率的关键。当我们要求清晰的声音时,这意味着可靠的通话,易于听清和理解。长电池寿命可帮助您避免失去联系。坚固耐用、性能高但操作简单的设备将使一切更容易处理。
摘要 - 使用Wi-Fi,红外线和RF等信号来收集环境数据的无线传感技术的开发在物联网(IoT)系统中已显着提高。在其中,射频(RF)传感因其成本效益和非侵入性人类活动和环境变化而脱颖而出。但是,传统的RF感应方法面临重大挑战,包括噪声,干扰,不完整的数据和高部署成本,这限制了它们的有效性和可扩展性。本文研究了生成AI(Genai)在物联网生态系统中克服这些局限性的潜力。我们对最先进的Genai技术进行了综合审查,重点是它们在RF传感问题上的应用。通过生成高质量的合成数据,增强信号质量并集成多模式数据,Genai为RF环境重建,定位和成像提供了强大的解决方案。此外,Genai概括的能力使IoT设备能够适应新的环境和看不见的任务,从而提高其效率和性能。本文的主要贡献包括对RF感应中的挑战,基于创新的Genai解决方案的介绍以及针对各种RF感应任务的统一框架的提议的详细分析。通过案例研究,我们证明了整合Genai模型的有效性,从而导致高级,可扩展和智能的物联网系统。
>×ŝnŝnjIHP是德国研发机构,专注于无线和宽带通信。核心竞争力是:•混合信号过程技术•RF和数字电路设计•通信ɛ系统IHP IHP正在运行8英寸的飞行线,该线位于1,000平方米级级别的清洁室中。几个0.25 µm和0.13 µm SIGE:C BICMOS技术可用。IHP解决方案GmbH是IHP的100%子公司。 IHP解决方案旨在集中于IHP研究活动的研究结果(技术转移)以及沿IC制造价值链中增值服务的商业合作伙伴的研究结果(技术转移)。 在IHP服务产品的背景下,IHP解决方案ɛ负责商业IC生产。IHP解决方案GmbH是IHP的100%子公司。IHP解决方案旨在集中于IHP研究活动的研究结果(技术转移)以及沿IC制造价值链中增值服务的商业合作伙伴的研究结果(技术转移)。在IHP服务产品的背景下,IHP解决方案ɛ负责商业IC生产。
a b s t r a c t被认为是一种侵入性治疗方法之一,而微针刺则是一种非侵入性治疗方法。另一方面,激光或脱皮后的必要护理对许多人来说很烦人,尤其是在炎热的季节。因为在今年的这一部分,由于紫外线的高水平,皮肤护理条件变得更加困难。同一问题使激光方法中的恢复期比微观更长。换句话说,如果您使用分数CO2激光恢复了皮肤,则应该在家里呆7-10天度过恢复期,但是您可能会被问到为什么使用激光的皮肤复兴恢复期是否比微针刺长?恢复期持续时间的差异取决于这两种治疗方法的有效性。在激光器中,皮肤表皮的表面层受到影响,这实际上是保护皮肤的主要责任,但是在微针刺中,皮肤的内部层受到影响,并且考虑到这种治疗方法可以快速完成血液流动,皮肤的愈合速度和恢复速度也很快。
提供的信息被认为是准确和可靠的。但是,SGS-Thomson微电子学对使用此类信息的后果或对可能因其使用而造成的第三方的其他权利或其他权利的任何侵犯或其他权利都没有承担任何责任。在SGS-Thomson微电子学的任何专利或专利权下,没有任何许可证授予许可。本出版物中提到的规格如有更改,恕不另行通知。该出版物取代并替换了先前提供的所有信息。SGS-Thomson微电子产品未被授权用作生命支持设备或系统中的关键组件,而无需明确的SGS-Thomson Microelectonics的书面认可。
Hytera 的 BD302 双向无线电是一款紧凑型设备,可通过易于操作的方式提供专业通信。如今,通信工具是提高效率的关键。当我们要求清晰的声音时,这意味着可靠的通话,易于听清和理解。长电池寿命可帮助您避免失去联系。坚固耐用、性能高但操作简单的设备将使一切更容易处理。