构成鸟类正常微生物的不同微生物可以存在于不同底物中,例如土壤和构成栖息地的其他元素。在牛肠,由于部分迁移习惯,肠道菌群可能会改变。因此,这项研究旨在隔离和鉴定出从墨西哥东部经济区Tulancingo的牛群(bubulcus ibis)粪便粪便中获得的真菌和酵母。牛群粪便进行分析,共240个池样品,这些样品分布在Sabouraud琼脂上,并在25.00-37.00°C下孵育2至3天。丝状真菌和酵母是通过形态学和乳酚蓝染色或中国墨水染色鉴定的。丝状真菌属粘液属。(42.35%),根茎属。(26.71%);青霉属。(13.35%); Paecilomyces spp。(11.40%); Scedosporium spp。(1.95%);并且,来自诸如加密赛属的酵母。(2.29%); Rhodotorula spp。(1.95%)被鉴定出来。在这项工作中,从牛肠粪便中分离出具有人畜共患势的丝状真菌属和酵母菌的存在。当存在免疫抑制或结合不同的倾向因子时,可能会发生真菌感染的临床表现。鸟类的存在及其在人为活性中的下降并不是在免疫学胜任人类中表现出疾病的诱人因素。
1动物生产技术部门,印度尼西亚利马·普鲁·科塔(Lima puluh Kota)农业理工Payakumbuh; 2印度尼西亚利马·普鲁·科塔(Lima puluh Kota)的农业理工payakumbuh农业生产技术部门。Nilawati,Ramaiyulis,Yanti,R。和Gustian,A。(2024)。肉鸡内器官对基于基于基于乳酸的根茎和乳杆菌的益生菌的反应。国际农业技术杂志20(5):2055-2064。摘要这项研究确定了基于基于Rhyzopus oryzae和casei乳杆菌对肉鸡内器官的益生菌的影响。肉鸡参数的内部器官是心脏重量,肝脏重量,腹部脂肪重量,牙齿重量,肠道长度和肉鸡胰腺重量。在从yakult(发酵牛奶)中分离出的tempeh酵母和酪蛋白分离的研究中使用的R. oryzae。结果发现,肉鸡的心脏,肝脏,腹部脂肪,肠脂肪,肠长度和胰腺体重的重量存在显着差异(p <0.05),并且在益生菌和不给予益生菌的情况下,肉鸡的重量没有显着差异(p> 0.05)。通过施用益生菌增加了肉鸡的心重,肝脏达到10.15g,肝脏达到31.32g,胰腺达到3.96克,腹部脂肪降低,达到28.89g,肠道长度的增加达到192.48 cm。发现的结果表明,为基于R. oryzae和L. casei提供益生菌是为肉鸡内部器官带来的积极益处。关键字:肉鸡,内脏,益生菌简介
总数讲座:60学分:4 U NIT 1:藻类(12个讲座)一般特征;生态和分布; Thallus组织和繁殖范围;藻类的分类;以下内容的形态和生命周期:Nostoc,衣原体,Oedogonium,Vaucheria,Fucus,Polysiphonia。藻类的经济重要性2:真菌(14个讲座)简介 - 一般特征,生态学和意义,thallus组织的范围,细胞壁组成,营养,繁殖和分类;真正的局限性 - 一般特征,生态学和意义,根茎的生命周期(zygomycota)青霉,替代品(Ascomycota),puccinia,agaricus(basidionymycota);共生协会 - 地层:一般帐户,繁殖和意义; Mycorrhiza:外生菌和内了解术及其意义单元3:大规模生殖器(14个讲座)统一特征的统一特征,过渡到土地习惯,几代人的交替。苔藓植物的一般特征,适应土地习惯,分类,thallus组织的范围。分类(直至家庭),形态学,解剖学和Marchantia和Funaria的生殖。(不包括发展细节)。生态学和经济重要性,特别提及泥石用。单元4:翼展(12个讲座)一般特征,分类,早期土地植物(库克森氏菌和rhynia)。分类(直至家庭),形态学,解剖学和selaginella,equisetum和pteris的繁殖。(不包括发展细节)。杂种和种子习惯,恒星进化。孢子体的生态和经济重要性。单元5:Gymnosperms(8个讲座)一般特征,分类。分类(直至家庭),形态学,解剖学和果石的繁殖。(不包括发展细节)。生态和经济重要性。
通过攻击害虫或其他机械损伤释放出一种假定的伤口激素,该激素在整个植物中释放出诱导叶子以引发叶子来引发合成并积聚两个丝氨酸内肽酶的蛋白质含量(1)。该蛋白酶抑制剂诱导因子(PIIF)一直与大小变化的多糖始终相关(2),这表明PIIF活性可能与特定的糖序或结构固有。最近,MR 5000- 10,000的高活性番茄PIIF部分被证明是果多糖。它的位置类似于酶促产生的nicamore细胞壁的碎片,该薄膜壁是200,000的MR,其具有与番茄PIIF相似的效率(3)。该证据表明PIIF活性可能与植物细胞壁的结构成分有关。但是,鉴于大小的大小。番茄果果多糖和nicamore细胞壁碎片均可质疑它们在体内受伤后是否会通过植物血管系统迅速运输。- 在这种交流中,我们报告了一种纯galactu -ronase纯化。真菌根瘤菌(4)将番茄piif降解为寡糖,当蛋白酶抑制剂I的活性诱导剂提供给切除的番茄叶时。我们还表明,部分纯化的两个末代乳乳糖酶的混合物。番茄水果,将番茄PIIF和纯化的番茄细胞壁降解为PIIF活性寡糖。这些结果表明,细胞损伤在体内产生的PIIF活性位于植物细胞壁的小水解碎片中。
这项工作是为了对棕榈油加工废物(POPW)对土壤微生物的影响进行比较分析。从三个不同的位置收集了三个土壤样品,即北岸,Wurukum和高级棕榈油加工废物的高级样品。分析样品,用POPW侵入的土壤样品作为对照。使用标准方法对土壤样本的物理化学参数进行了分析。使用POUR板法评估了总大肠菌数,总可行计数和总真菌计数。的结果表明,与该值相比,三个样本中的总大肠菌形,总数和总真菌数量(200.77±16.525平均值,22.55±2.041平均三个样本的平均值,而受影响的土壤的三个样本的平均值为28.88±2.590平均值(291.00±13.00±13.00 n in y Insive。分别用作对照的非冲击土壤的44.33±1.527。与这些土壤样品分离的细菌属包括:芽孢杆菌,克雷伯菌,葡萄球菌spp,沙门氏菌和proteus spp。与POPW土壤中分离出的真菌属包括:曲霉菌属,根茎属和粘液属SPP的结果表明,POPW对土壤微生物群有直接的负面影响,因为它们的应用可能会导致影响土壤微生物群落的变化。因此,可以建议制定适当的准则,以便在POPW进行预处理和安全放电,以避免其对土壤微生物生物群和土壤生育能力的影响。关键字:土壤;棕榈油;细菌;真菌;废水
摘要。Anwar A,Zainuddin,Djawad Mi,AslamyahS.2023。使用混合微生物提高其营养质量的雨树(萨曼萨曼)粉粉的发酵。生物多样性24:5863-5872。雨树(萨曼萨曼)种子粉是蛋白质的来源;然而,由于存在抗营养剂,例如单宁蛋白作为蛋白质抑制剂,高粗纤维含量,溶解的蛋白质以及干燥和有机物的消化率低。使用混合微生物发酵可能会增强雨树粉的营养价值。这项研究旨在提高营养质量,并在体外使用混合微生物在体外使用混合微生物来减少雨树粉中的抗营养因素。这项研究中使用的微生物包括芽孢杆菌,酿酒酵母和根茎sp。这项研究是使用完全随机设计的阶乘设计的,即使用两个因素,即3剂混合微生物(0、1.5、3和4.5 ml/100 g雨树籽粉)和3个不同的孵育时间(42、72和96小时)。微生物剂量和孵育时间之间存在显着相互作用。The treatment of 4.5 mL of mixed microbes/100 g rain tree seed meal and a 72 hours incubation time reduced substantially crude fiber content (59.60%) and crude fat (73.20%), coupled with an increase in crude protein content (11.62%), NFE (6.52%), dry matter digestibility (DMD) (36.78%), organic matter digestibility (OMD) (50.42%)和溶解的蛋白质含量(20.27%)。单宁含量在处理4.5 ml混合微生物/100g雨树粉时显着降低(37.72%),孵育时间为96小时。这些发现表明,经受发酵72小时或更长时间的雨树粉可改善营养质量,DMD和OMD。
测试的代表性微生物:(部分概要)HyGenesis 系统:细菌 醋酸钙不动杆菌 1 真菌 黑曲霉 基于独特的抗菌技术,可有效控制各种处理物品和基质上的细菌、真菌、藻类 枯草芽孢杆菌 烟曲霉 和酵母。抗菌活性物质是在美国环境保护局和全球类似监管机构注册的猪布鲁氏菌 杂色曲霉 布鲁氏菌 出芽短梗霉 伯克霍尔德菌 洋葱毛壳菌。这种抗菌剂已安全有效地使用了三十多年。产气荚膜梭菌 镰刀菌 鲍氏棒状杆菌 粉红粘帚菌 本表是应众多要求编制的,要求提供该技术有效的微生物清单。我们选择了大肠杆菌 ATCC 23266 白色青霉菌,以提供测试谱,其中大肠杆菌 1 黄青霉菌 代表所有重要类型和猪嗜血杆菌 柑橘青霉菌 微生物种类。流感嗜血杆菌 秀丽隐杆线虫 肺炎克雷伯菌 ATCC 4352 绳状青霉 干酪乳杆菌 腐殖质青霉 乳酸明串珠菌 青霉菌 单核细胞增多性李斯特菌 变异青霉 耐甲氧西林葡萄球菌 金黄色葡萄球菌 黑根霉 微球菌 sp. Stachybotrys atra 耻垢分枝杆菌 黄木霉 结核分枝杆菌 趾间毛癣菌 痤疮丙酸杆菌 须毛癣菌 奇异变形杆菌 藻类 奇异变形杆菌1 鱼腥藻 B-1446-1C 普通变形杆菌 小球藻 铜绿假单胞菌 Gium sp. LB 9c 铜绿假单胞菌 PRD-10 波恩颤菌 LB143 铜绿假单胞菌 1 胸膜球菌属 LB11 洋葱假单胞菌 四尾假单胞菌 细长月牙藻 B-325 猪霍乱沙门氏菌 团藻属 LB 9 伤寒沙门氏菌 酵母菌 金黄色葡萄球菌(无色素)1 白色念珠菌 金黄色葡萄球菌(有色素)1 酿酒酵母 表皮葡萄球菌 1 病毒 粪链球菌 禽流感 变形链球菌 HIV B 万古霉素耐药肠球菌 (VRE) 甲型流感 野油菜黄单胞菌 SARS
抽象的水果消费对人类健康至关重要。销售已经处理过的销售和即食水果的路边供应商在几个发展中国家已成为一种普遍做法。也越来越担心跨动措施和污染。该研究评估了使用标准方案的加工水果(PAW,西瓜和菠萝)的微生物质量。据报道,据报道,pawpaw水果(0.593–1.890×10 5 cfu/g),西瓜(0.377–1.537×10 5 cfu/g)和菠萝(0.330-0.983×10 5 cfu/g)的结果。 PAWPAW的真菌计数为0.207–1.693×103 CFU/g,0.690–2.330×10 3 CFU/g西瓜,菠萝水果的真菌计数为0.237–1.467×103 cfu/g。 我们发现,pawpaw的肠杆菌含量范围从0.247至2.507 10 3 CFU/g,西瓜的0.340–2.150 10 3 CFU/g,pineapple的0.213至1.213至1.250 x 10 3 cfu/g。 在大多数水果样品和所有收集地点中,细菌,真菌和肠杆菌科的水平差异很大。 根据这项研究的发现,我们建议对水果供应商进行持续监测,并在水果制备过程中遵守无菌措施。 关键词:微生物质量,细菌,真菌,生物多样性,肠杆菌科1。 引言微生物质量是指在食品中发现的微生物的水平,例如水果(Adesina&Ajila,2018年)。 可以看作是在耕种,收获和消费过程中在水果上发现的微生物的浓度(Adegoke&Aiyegoro,2015年)。 水果是盛开的植物的卵巢。。PAWPAW的真菌计数为0.207–1.693×103 CFU/g,0.690–2.330×10 3 CFU/g西瓜,菠萝水果的真菌计数为0.237–1.467×103 cfu/g。我们发现,pawpaw的肠杆菌含量范围从0.247至2.507 10 3 CFU/g,西瓜的0.340–2.150 10 3 CFU/g,pineapple的0.213至1.213至1.250 x 10 3 cfu/g。在大多数水果样品和所有收集地点中,细菌,真菌和肠杆菌科的水平差异很大。根据这项研究的发现,我们建议对水果供应商进行持续监测,并在水果制备过程中遵守无菌措施。关键词:微生物质量,细菌,真菌,生物多样性,肠杆菌科1。引言微生物质量是指在食品中发现的微生物的水平,例如水果(Adesina&Ajila,2018年)。可以看作是在耕种,收获和消费过程中在水果上发现的微生物的浓度(Adegoke&Aiyegoro,2015年)。水果是盛开的植物的卵巢。水果的微生物质量包括许多类别的微生物,其数量以及它们诱导损伤或恶化的能力(Adesina&Ajila,2018年)。水果是通常以自然状态摄入或最少改变的植物植物项目(Tiwari等,2020)。(Tiwari等,2020)。至关重要的是要理解该社区关于水果微生物学质量的不同属性,习俗和困难(Okoloba&Ilegbusi,2017年)。果实污染可能是由有益和有害微生物引起的(Adegoke&Aiyegoro,2015年)。农业实践,环境因素和加工方法都会影响果实的质量。在水果中发现的常见细菌包括乳酸杆菌,链球菌,芽孢杆菌和沙门氏菌。真菌物种,例如曲霉菌,青霉和根茎也可能引起污染(Adegoke&Aiyegoro,2015年)。这些微生物可能会产生负面影响,并对食品安全构成潜在威胁。
摘要:本文旨在评估尼日利亚阿夸伊博姆州主要湿地(Nwaniba、Ibaka、Ibeno 和 Itu)的对虾(Macrobrachium vollenhovenii)鱼片中的微生物含量、物种特征和组成。使用标准微生物程序确定对虾鱼片中的微生物含量、物种特征和组成。研究结果显示,总异养细菌计数范围从 Ibeno 样本的 2.10 x 104cfu/g 到 Itu 样本的 7.30 x 104cfu/g。Itu 样本还记录了总异养真菌计数的最高值(3.5 x 104cfu/g)。共分离出 8 种细菌(金黄色葡萄球菌、白色葡萄球菌、产气肠杆菌、蜡状芽孢杆菌、大肠杆菌、藤黄微球菌、弗氏节杆菌和沙门氏菌)和 6 种真菌(热带念珠菌、黑曲霉、黄曲霉、土曲霉、粘毛霉和根霉)。细菌种类藤黄微球菌和弗氏节杆菌的出现频率为 100%,而真菌种类为热带念珠菌。这些湿地地区的虾样本中存在这些致病生物可能意味着对虾消费者的健康构成潜在威胁,尤其是当产品在食用前未煮熟或加工不当时。 DOI:https://dx.doi.org/10.4314/jasem.v27i11.37 开放获取政策:JASEM 发表的所有文章均为由 AJOL 提供支持的 PKP 下的开放获取文章。文章发表后立即在全球范围内提供。无需特殊许可即可重新使用 JASEM 发表的全部或部分文章,包括图版、图表和表格。版权政策:© 2023 作者。本文是一篇开放获取文章,根据知识共享署名 4.0 国际 (CC-BY-4.0) 许可的条款和条件分发。只要引用原始文章,即可重新使用文章的任何部分而无需许可。引用本文为:EFFIONG, M. U; ADEYEMI, AV (2023)。对尼日利亚阿夸伊博姆州主要湿地对虾(Macrobrachium vollenhovenii)鱼片的微生物负荷、物种特征和组成进行评估。 J. Appl. Sci. Environ. Manage. 27 (11) 2643-2649 日期:收到日期:2023 年 9 月 30 日;修订日期:2023 年 10 月 29 日;接受日期:2023 年 11 月 7 日 出版日期:2023 年 11 月 30 日 关键词:湿地、异养细菌计数、真菌计数、Macrobrachium vollenhovenii 世界各地海鲜中毒事件的不断增加凸显了微生物控制在渔业中的重要性。研究表明,微生物风险评估已成为评估食品和水供应安全的新兴工具(Effiong 和 Christopher,2020 年)。据报道,对虾携带可导致海传播疾病的病原体(Iwamoto 等人,2010 年)。据报道,其中一些致病菌(弧菌属、沙门氏菌属、链球菌属和葡萄球菌属)可导致人类出现各种健康问题(Lipp 和 Rose,2011 年)。尽管虾具有健康和营养价值,但它极易腐烂,肠道中可能寄生大量细菌
摘要 从埃及土壤和食物来源中分离出产生磷脂酶 C (PLC) 的细菌。通过 16S rRNA 测序,将一种强效假单胞菌分离物鉴定为 P. fluorescens MICAYA,并以基因登录号 (OQ231499) 记录在 GenBank 中。通过 Plackett Burman 和中心复合设计进行优化发现,豆粕、酵母提取物、NaCl 和蛋黄显著提高了磷脂酶 C 的产量。Michaelis-Menten 动力学确定了 K m 为 0.4 mg/ml 蛋黄,V max 为 287 U/ml。Box Behnken 设计确定了 395 U/ml 磷脂酶 C 产量的最佳 pH 值为 6.5、0.55 g/l CaCO 3、1.05% 蛋黄、48.5°C。该磷脂酶对人成纤维细胞表现出低细胞毒性。磷脂酶 C 浓度(0.2-1 ml)可有效脱胶芝麻、洋甘菊、西洋菜、荷荷巴油、橄榄、黑种草和蓖麻油。磷脂酶 C 浓度为 0.4-0.8 ml/L 时磷脂减少率最高。荧光假单胞菌磷脂酶 C 提供了一种可生物降解的化学脱胶替代方法。总之,统计优化成功提高了磷脂酶 C 的产量。表征发现该酶在碱性 pH、中等温度和蛋黄底物下效果最佳。已证明多种植物种子油具有生物脱胶能力。进一步固定化和蛋白质工程可以提高磷脂酶 C 的工业效用。关键词:磷脂酶 C;荧光假单胞菌;培养基优化;油脱胶;酶动力学。 _____________________________________________________________________________________________________________ 1. 简介 磷脂酶 (PLC) 水解磷脂骨架中的磷酸二酯键,根据所涉及的具体磷脂种类产生 1,2-二酰基甘油和磷酸单酯。微生物磷脂酶是催化磷脂水解的酶。由于其广泛的底物特异性、温和条件下的高活性以及易于大规模生产,它们具有广泛的工业应用 [1]。磷脂酶已被用于修改磷脂结构以生产特定脂质、脱胶植物油、合成化妆品成分、改善面团的烘焙特性、产生风味和香气等 [2]。真菌、细菌和酵母等微生物来源的磷脂酶比植物和动物来源具有优势,因为它们可以通过发酵以高产量和纯度生产 [3]。最有效的真菌生产者是黑曲霉、环青霉和少根根霉。黑曲霉可产生高产量的磷脂酶 A1 和 A2 [4]。固定化黑曲霉磷脂酶 A2 对植物油的重复脱胶表现出良好的稳定性 [5]。最常见的细菌生产者是假单胞菌和芽孢杆菌。铜绿假单胞菌和蜡状芽孢杆菌产生胞外磷脂酶 C [6,7]。枯草芽孢杆菌分泌磷脂酶 A2,并且已经通过基因改造以提高产量。在稳定期,荧光假单胞菌可以产生各种具有抗菌潜力的次级代谢物,例如氢氰酸 (HCN)、绿脓杆菌素 (Pit) 和 2,4-二乙酰间苯三酚 (Phi),以及铁螯合代谢物 [8]。绿脓杆菌素、水杨酸和绿脓杆菌素。蛋白酶、磷脂酶 C 和脂肪酶是从各种环境中分离的荧光假单胞菌菌株产生的三种细胞外酶的例子 [9]。在稳定生长期测定的磷脂分解活性水平最高,表明生长阶段依赖机制负责诱导这些酶。此外,酵母生产者是隐球菌,它被固定化并用于大豆油脱胶。 Candida rugosa 是一种脂肪酶和磷脂酶生产者,固定化 C. rugosa 脂肪酶用于结构化脂质的生产 [10]。微生物磷脂酶,如磷脂酶 A1、A2、C 和 D,在脱胶、油脂酯交换、卵磷脂生物合成和废水处理应用中表现出良好的应用前景 [11]。它们的酶水解导致磷脂部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和表征,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。