摘要 目的.脑机接口(BCI)低效性意味着将有10%到50%的用户无法操作基于运动想象的BCI系统。值得注意的是,之前对BCI低效性的研究几乎都是基于感觉运动节律(SMR)特征的测试。在本研究中,我们利用SMR和运动相关皮层电位(MRCP)特征评估了BCI低效性的发生情况。方法.在不同的日子里,对93名受试者记录了2个会话中的静息态和运动相关脑电信号数据集。采用公共空间模式(CSP)和模板匹配两种方法提取SMR和MRCP特征,并采用赢家通吃策略利用线性判别分析的后验概率来评估模式识别,以结合SMR和MRCP特征。主要结果.结果表明,两类特征表现出高度的互补性,与它们的弱相互相关性相符。在二分类问题(右脚 vs. 右手)中 SMR 特征准确率较差(< 70%)的受试者组中,SMR 和 MRCP 特征的组合将平均准确率从 62% 提高到了 79%。重要的是,特征组合获得的准确率超过了效率低下阈值。意义。SMR 和 MRCP 的特征组合在 BCI 解码中并不新鲜,但使用 SMR 和 MRCP 特征对 BCI 效率低下进行大规模可重复的研究是新颖的。MRCP 特征对 SMR 特征准确率较差(< 70%)和良好(> 90%)的两个受试者组提供相似的分类准确率。这些结果表明,SMR 和 MRCP 特征的组合可能是降低 BCI 效率低下的一种实用方法。然而,在本研究之后,“BCI 效率低下”可能更恰当地被称为“SMR 效率低下”。
摘要:实验表明,在运动想象 (MI) 任务中,左背外侧前额叶皮层 (DLPFC) 被激活,但其功能作用需要进一步研究。在这里,我们通过对左侧 DLPFC 施加重复经颅磁刺激 (rTMS) 并评估其对大脑活动和 MI 反应潜伏期的影响来解决这个问题。这是一项随机、假对照的 EEG 研究。参与者被随机分配接受假刺激 (15 名受试者) 或真实高频 rTMS (15 名受试者)。我们进行了 EEG 传感器级、源级和连接分析,以评估 rTMS 的影响。我们发现,对左侧 DLPFC 的兴奋性刺激通过它们之间的功能连接增加了右侧楔前叶 (PrecuneusR) 的 θ 波段功率。楔前叶 θ 波段功率与 MI 反应的潜伏期呈负相关,因此 rTMS 加快了 50% 参与者的反应。我们假设后部 θ 波段功率反映了感觉处理的注意力调节;因此,高功率可能表示注意力处理并导致更快的反应。
通过单击工具栏中的图标,您可以查看通量的首选项。您可以移动滑块以设置屏幕的构图。您可以看到我始终将我的矿山设置为更黄。它知道我在凌晨6:30醒来,并假定我的就寝时间是晚上10:30。您可以看到,当我们接近邮政编码的日落时,它将改变我的屏幕的组成,甚至在过去的睡前时更加急剧。
3 设计 6 3.1 先前的工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.3 实验数据....................................................................................................................................................................................9 3.2 数据预处理....................................................................................................................................................................................................10 3.2.1 数据分离....................................................................................................................................................................................................11 3.2.2 数据分割....................................................................................................................................................11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................................................................................................................................................................. 15 3.4 自回归模型.................................................................................................................................................................................... 15 3.4.1 通道间相关性.................................................................................................................................................................................... 15 3.4.2 通道自相关性.................................................................................................................................................................................... 16
在一系列手术中,通常使用电外科手术来维持有效的止血。这可能会对心脏植入式电子设备 (CIED) 造成电磁干扰 (EMI),从而妨碍设备的正常功能。CIED 包括起搏器 (PPM)、植入式心脏除颤器 (ICD)、心脏再同步治疗设备(起搏器和除颤器 (CRT-P/CRT-D))和植入式循环记录器 (ILR)。电灼术可导致发电机损坏、起搏抑制、异步起搏激活和心室颤动。在电外科手术期间对 CIED 进行积极的管理计划对于最大限度地减少 EMI 的这些不利影响至关重要。目的:促进在电外科手术期间对 CIED 患者进行安全有效的围手术期管理。H
神经反馈 (NF) 训练的核心学习机制是联想性的、隐性的,因此在很大程度上不受意识的影响。然而,决定训练结果的许多其他训练方面都可以被意识处理。感觉运动节律 (SMR) 上调训练的结果与参与者报告的策略有关。迄今为止采用的个体策略的分类方法可能受到评估者特殊解释的影响。为了衡量并可能克服这一限制,我们聘请了独立的评估者来分析 SMR 上调训练期间报告的策略。62 名健康的年轻参与者参加了一次 SMR 上调训练。在完成六个训练模块后,参与者需要报告所采用的策略,在训练中,他们要么收到简单的视觉反馈,要么收到游戏化版本的反馈。他们的个人学习成果也被计算出来。结果表明,个人策略以及 NF 学习成果对 SMR 上调训练中的游戏化元素的存在并不特别敏感。独立评估者对策略报告进行分类时观察到高度一致性。一些策略更典型地适用于响应者,而其他策略更常见于无响应者。总之,我们展示了一种更客观、更透明的方式来分析个人心理策略,以更好地揭示 NF 响应者与无响应者之间的差异。
1 印度西孟加拉邦米德纳普尔学院生理学系,邮编 721101;2 美国纽约州花园城阿德菲大学文理学院生物系及美国纽约州花园城阿德菲大学戈登 F. 德纳心理学院心理学系;3 美国德克萨斯州休斯顿德克萨斯南方大学药学院药学系,邮编 77004;4 美国密苏里州圣路易斯华盛顿大学医学院精神病学系;5 美国俄亥俄州克利夫兰凯斯西储大学医学院精神病学系;6 巴西米纳斯吉拉斯联邦大学生物科学研究所遗传学、生态学和进化系,邮编 31270-901; 7 综合组学和应用生物技术研究所,Nonakuri,Purba Medinipur,721172,西孟加拉邦,印度;8 西方健康科学大学体育、锻炼和心理健康中心成瘾研究与教育部,加利福尼亚州波莫纳,91766,美国;9 匈牙利布达佩斯罗兰大学心理学研究所,1053,匈牙利;10 莱特州立大学邦绍夫特医学院和代顿 VA 医学中心精神病学系,俄亥俄州代顿,45435,美国;11 佛蒙特大学精神病学系,佛蒙特州伯灵顿,05405,美国;12 肯尼斯·布鲁姆行为与神经遗传研究所营养基因组学部,德克萨斯州奥斯汀,78701,美国; 13 以色列阿里埃勒大学阿德尔森医学院分子生物学系
使用ECG247的指示智能心脏传感器用于心理持续心律记录(ECG)用于心律障碍(心律不齐)的诊断。ECG247智能心脏传感器可用于自我测试和/或与医疗保健人员合作。ECG247智能心脏传感器既可以用于筛查心律障碍和调查症状。ECG247智能心脏传感器是用于检测以下心律障碍的医学诊断工具:心房颤动/颤动,心室心动过速,上心动过速心动过速,心动过缓,胸肌和停顿。心律障碍是与正常心律(窦性节奏)的所有偏差的常见术语。心律障碍会引起快速,缓慢或不规则的心律,并会引起不规则心跳,心pit,头晕或晕厥等症状。心脏信号对每个人都有不同的字符。ecg247不能保证ECG247智能心脏传感器会在每个人中检测所有可能的心律障碍,并且不能保证即使测试显示正常的发现,也不会发生心律障碍。自动节奏分析可能会误解心律信号,并且系统可能会错误警告可能的心律障碍。在警告可能的心律障碍的情况下,必须始终由医生评估该检查。ECG247智能心脏传感器不能用于研究心肌梗塞/冠状动脉疾病。始终与医生联系以获取心脏症状。ECG247 Smart Heart Sensor should not be used for: • Real-time heart rhythm monitoring in hospitals • Children <10 kg ECG247 Smart Heart Sensor is not recommended for use in • Pregnant women • People with severe obesity (BMI>40) • People with a pacemaker or implanted defibrillator (ICD) ECG247 Smart Heart Sensor must be kept out of the reach of children.