“哥斯达黎加太空雷达的意义是双重的,”前 NASA 宇航员、LeoLabs 联合创始人 Edward Lu 解释道。“首先,它提供了更高级别的数据,以告知和改进我们为进入低地球轨道的新兴卫星星座提供的运营服务。我们提供的每项服务,例如防撞或早期发射跟踪,都受益于哥斯达黎加太空雷达提供的额外数据。这是基础。其次,”Lu 继续说道,“与我们的其他雷达相结合,哥斯达黎加太空雷达扩展了我们提供低地球轨道中更多物体的实时地图、描述风险并将这种见解提供给我们的客户的能力。这是对太空可持续性和飞行安全的重大贡献。”
Sullivan,27 Dempsey,28 Ishitani,29和其他30-32岁,就其地面和激发态特性研究了不同的rhenium(I)羰基配合物。在这些配合物的设计中,持续的挑战是它们的吸收扩展到电磁谱的可见和近红外(NIR)区域。我们已经表明,通过在配体框架的远程位置引入像NME 2这样的强有力的捐赠组,激发状态的角色发生了变化(例如,在复合物1a和1b之间,方案1)从金属到配体电荷转移(MLCT)到内聚电荷转移(ILCT)。这导致了Ca的红移。100 nm的吸收最大值和B 200倍的寿命增加,伴随着B灭绝系数增加了5倍。24
[80] S. Rezaeiravesh,R。Vinuesa和P. Schlatter。一个不确定性定量框架,用于评估计算流体动力学中的准确性,灵敏度和鲁棒性。J. Comput。SCI。 ,62,101688,2022。 [81] M. Morimoto,K。Fukami,R。Maulik,R。Vinuesa和K. Fukagata。 基于神经网络的流体流量估计中的模型形式的不存在定量。 Nagare J. JPN。 Soc。 流体机械。 ,41,2022。 [82] R. T. Javed,O。Nasir,M。Borit,L。Vanh´ee,E。Zea,S。Gupta,R。Vinuesa和J. Qadir。 下车! AI伦理教育中的孤岛:全球AI课程的无监督主题建模分析。 J. Artif。 Intell。 res。 ,73,933–965,2022。 [83] Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。 机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。 IEEE机器人。 Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。SCI。,62,101688,2022。[81] M. Morimoto,K。Fukami,R。Maulik,R。Vinuesa和K. Fukagata。基于神经网络的流体流量估计中的模型形式的不存在定量。Nagare J. JPN。Soc。流体机械。,41,2022。[82] R. T. Javed,O。Nasir,M。Borit,L。Vanh´ee,E。Zea,S。Gupta,R。Vinuesa和J. Qadir。下车!AI伦理教育中的孤岛:全球AI课程的无监督主题建模分析。J. Artif。 Intell。 res。 ,73,933–965,2022。 [83] Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。 机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。 IEEE机器人。 Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。J. Artif。Intell。 res。 ,73,933–965,2022。 [83] Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。 机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。 IEEE机器人。 Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。Intell。res。,73,933–965,2022。[83]Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。 机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。 IEEE机器人。 Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。IEEE机器人。Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。Autom。mag。,29,92–107,2022。[84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。翅膀中的流量控制和通过深度加强学习发现新方法。流体,7,62,2022。[85] R. Vinuesa和S. Le Clainche。用于复杂流的机器学习方法。Energies,15,1513,2022。[86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。在rans模拟中,边界层的湍流跳闸技术。流湍流。燃烧。,108,661–682,2022。[87] N. Tabatabaei,M。Hajipour,F。Mallor,R。Orloul - Orl u,R。Vinuesa和P. Schlatter。使用风洞测量值对NACA4412唤醒建模。流体,7,153,2022。[88] G. R. McPherson,B。Sirmacek和R. Vinuesa。质量灭绝事件的环境阈值。结果工程。,13,100342,2022。[89] D. Mamchur,J。Peksa,S。LeClainche和R. Vinuesa。用于非侵入对象检查的射线照相和新技术的应用和进步。传感器,22,2121,2022。[90] R. Raman,P。Singh,V。K. Singh,R。Vinuesa和P. Nedungadi。了解IEEE访问中出版物的文献计量模式。IEEE访问,10,35561–35577,2022。[91] M. Atzori,W。Kéopp,S。W. D. Chien,D。Massaro,F。Mallor,A。Peplinski,M。Rezaei,N。Jansson,S。Markidis,R。Vinuesa,E。Laure,P。Schlatter,P。Schlatter和T. Weinkauf。用paraview催化剂在NEK5000中大规模湍流模拟的原位可视化。J.超级计算。,78,3605–3620,2022。[92] D. Mamchur,J。Peksa,S。LeClainche和R. Vinuesa。对非侵害对象筛查技术的艺术状态分析。prz。elektrotech。,98,168–173,2022。[93] S. Singh Gill,R。Vinuesa,V。Balasubramanian和S. K. Ghosh。创新的软件系统,用于管理COVID-19大流行的影响。nat。软件。:实践。实验。,52,821–823,2022。[94] R. Vinuesa和B. Sirmacek。可解释的深度学习模型,以帮助实现可持续发展目标。马赫。Intell。 ,3,926,2021。 [95] L. Guastoni,A。Guemes,A。Ianiro,S。Decetti,P。Schlatter,H。Azizpour和R. Vinuesa。 卷积网络模型,以预测壁数量的壁湍流。 J.流体机械。 ,928,A27,2021。 [96] A. Guemes,S。Decetti,A。Ianiro,B。Sirmacek,H。Azizpour和R. Vinuesa。 从粗壁测量到湍流速度场,通过深度学习。 物理。 流体,33,075121,2021。Intell。,3,926,2021。[95] L. Guastoni,A。Guemes,A。Ianiro,S。Decetti,P。Schlatter,H。Azizpour和R. Vinuesa。卷积网络模型,以预测壁数量的壁湍流。J.流体机械。,928,A27,2021。[96] A. Guemes,S。Decetti,A。Ianiro,B。Sirmacek,H。Azizpour和R. Vinuesa。从粗壁测量到湍流速度场,通过深度学习。物理。流体,33,075121,2021。
可可农林系统(AFS)提供多种生态系统服务,这些服务受遮阳树社区的特征影响。通过基于其功能性状来战略性地选择和管理树荫,可可农民可以影响AFS的功能多样性,并有可能增强其所提供的好处。在这项研究中,我们应用了功能性状生态学,以更好地了解可可AFS功能多样性对三种生态系统服务的影响:碳储存,土壤生育能力和可可和其他产品的配置。为了实现这一目标,我们在生态复杂性的梯度中表征了30个AF,并使用ANOVA和多元回归模型在功能多样性指数与生态系统服务之间建立了关系。As a result, two contrasting ecological dynamics were observed: low-complexity AFS, dominated by resource-conservative traits (higher leaf dry matter content, higher stem specific density, and low leaf nitrogen concentration), were associated with lower carbon stocks and soil fertility, while high-complexity AFS, characterized by resource-acquisitive traits (low leaf dry matter content, low stem specific density, and high leaf nitrogen集中度),提供更大的生态系统服务。通过多元回归分析,我们发现AFS由具有更大电势高度,较高的叶氮浓度,较低的叶子干物质含量,较低的叶片含量,较低的叶片质量和较低的叶氮磷比率支配,与较高的碳储存(R 2 = 0.84),土壤生育能力相关(R 2 = 0.7 = 0.7 = 0.7 = 0.7 = 0.7 = 0.7 = 0.7 = 0.7 = 0.7 = 0.7.78。此外,可可的产量与阴影覆盖物和大型阴影树的主导地位负相关,从而揭示了最大化产量和增强生态系统服务之间的潜在折衷。然而,这些模型表明,当树荫生产性时,可以实现双赢的情况,从而产生额外的好处。最后,我们的研究强调了树荫特征与为农场可持续性和农民生计提供关键生态系统服务之间的关键关系。
哥斯达黎加的微藻生物技术是一个不断发展的研究领域。哥斯达黎加技术研究所(ITCR)生物技术研究中心(CIB)的微藻研究小组(CIB)在不同领域与微藻进行了研究,包括环境和农业应用,以及食品和生物燃料开发。在这些领域,微藻已用于开发各种国家需求的解决方案。本评论介绍了微藻在四个关键领域的主要应用:环境,食品,农业和生物能源在国家一级,强调了该国研究小组在该国的贡献。此外,讨论了微藻生物技术在社会中的有效融合以及为哥斯达黎加的环境,社会和经济发展做出贡献的潜力所面临的挑战和机遇。
1关于金融教育和意识的原则和良好实践的建议[OECD/LEGAL/0338]],《金融教育良好实践理事会的建议与信贷有关[OECD/Legal/0370]有关的良好实践和意识的建议,该理事会对理事会在政策框架上提出了有效和有效的财务框架的建议[OECD//037], Consumer Protection [ OECD/LEGAL/0394 ], the Recommendation of the Council on Consumer Protection in the Field of Consumer Credit [ OECD/LEGAL/0453 ], the Recommendation of the Council on n Principles for Private Sector Participation in Infrastructure [ OECD/LEGAL/0349 ], the Recommendation of the Council on Human Biobanks and Genetic Research Databases [ OECD/LEGAL/0375 ], the Recommendation of the Council on the Governance of Clinical Trials [ OECD/LEGAL/0397 ], the Recommendation of the Council on Quality Assurance in Molecular Genetic Testing [ OECD/LEGAL/0350 ], the Recommendation of the Council on Assessing the Sustainability of Bio-based Products [ OECD/LEGAL/0395 ], the Recommendation of the Council on the Licensing of Genetic Inventions [ OECD/LEGAL/0342 ], and the Recommendation of理事会涉及从公共资助获得研究数据[OECD/LEGEL/0347]。
摘要 波多黎各是加勒比海的一个岛屿,是美国的非建制领土。它自然风光秀丽,游客众多。然而,它目前正处于一场持续多年的经济危机之中,在飓风玛丽亚过后,它正努力重建。此外,流行文化和统计数据表明,许多波多黎各人正在从该岛移民。波多黎各必须解决这些问题,以确保其公民能够继续在岛上过上高质量的生活。为此,美国政府必须与波多黎各密切合作。波多黎各和美国需要实施一项稳固的财政计划,并使用联邦援助来重建飓风玛丽亚过后的岛屿,利用可持续能源(如太阳能、风能、水力发电)转向更具弹性的绿色经济,并将生态旅游作为主要收入来源。这将限制从波多黎各移民,并帮助那里的人们找到当地的新机会。详细阅读了 Esmeralda Santiago 的自传《当我是波多黎各人时》,以了解波多黎各人对移民经历的态度。这本书强调了波多黎各当地风光对作者童年的影响。此外,由 Julio Quintana 执导的电影《容器》通过展示当地灾难对波多黎各社区的影响,进一步证实了这一论点。这让人们更加了解飓风玛丽亚等大型灾难的严重程度。
∗这项工作得到了苏黎世大学可持续贸易与物流中心的支持。本文先前以“可持续全球化的定量分析”为标题散发。这是Kuehne Impact Series 01-23的科学基础,“绿色比较优势:通过贸易打击气候变化”。我们感谢Luca Poll的出色研究帮助,并感谢各种研讨会和会议的参与者提供了非常有用的评论和建议。所有错误仍然是我们自己的。本文所表达的观点是作者的观点,它们并不是代表世贸组织或其成员的立场或意见,并且不受WTO中成员的权利和义务的影响。†苏黎世大学‡苏黎世大学苏黎世大学和世界贸易组织。通讯作者:ralph.ossa@econ.uzh.ch。kuehne Logistics大学。'Stavanger大学
重新定位我们的投资组合一直是该集团的重点,我们已经积极地继续工作,通过从服务转向解决方案的转变,使我们能够提高战略咨询专业知识,同时也大量投资于我们的数字化转型。随着Ricardo的数字平台的启动,我们现在能够提供可扩展和可重复的解决方案,特别利用我们的市场模型工具并将所有这些工具转换为数字应用程序。我们还在数字工具上取得了长足的进步,以支持我们在氢推进进步方面的技术创新,并最近扩大了我们的氢测试设施,该设施已经在接下来的12个月内已预订。