具有波包时间演化的量子核动力学在经典上是难以处理的,被视为量子信息处理的一种有前途的途径。在这里,我们使用 IonQ 11 量子比特离子阱量子计算机 Harmony 来研究短强氢键系统中共享质子的量子波包动力学。我们还提供了分布式量子计算在化学动力学问题中的第一个应用,其中分布式量子过程集是使用张量网络形式构建的。对于一系列初始状态,我们通过实验驱动离子阱系统来模拟量子核波包沿电子结构产生的势表面演化。在实验创建核波包之后,我们提取了测量可观测量,例如其时间相关的空间投影及其特征振动频率,与经典结果非常吻合。通过量子计算获得的振动本征能量与通过经典模拟获得的振动本征能量相一致,误差在千卡/摩尔的几分之一以内,因此表明具有化学准确性。我们的方法为研究分子的量子化学动力学和振动光谱开辟了一个新范式,也为分布式离子阱量子计算机上的并行量子计算提供了首次演示。
2006-8 国防科学与工程研究生奖学金出版物、专利和演示文稿参考期刊和预印本:39. 测量诱导的囚禁离子加热 AJ Rasmusson、I. Jung、F. Schroer、A. Kyprianidis 和 P. Richerme arXiv: 2404.09327 (2024) 38. NISQ 量子计算:以安全为中心的教程和调查 F. Chen、L. Jiang、H. Mueller、P. Richerme、C. Chu、Z. Fu 和 M. Yang IEEE 电路与系统 24 , 14 (2024) 37. 具有全局驱动器的囚禁离子量子模拟器中的交互图工程 A. Kyprianidis、AJ Rasmusson 和 P. Richerme 新物理学杂志 26 , 023033 (2024) 36. 用于学习可转移视觉表征的混合量子-经典神经网络 R. Wang、P. Richerme 和 F. Chen 量子科学与技术 8 ,045021 (2023) 35. 氢键动力学和振动光谱的量子计算 P. Richerme、MC Revelle、CG Yale、D. Lobser、AD Burch、SM Clark、D. Saha、MA Lopez-Ruiz、A. Dwivedi、JM Smith、SA Norrell、A. Sabry 和 SS Iyengar J. Phys. Chem. Lett. 14 ,7256 (2023) 34. 将量子化学动力学问题映射到自旋晶格模拟器上 D. Saha、SS Iyengar、P. Richerme、JM Smith 和 A. Sabry J. Chem. Theory Comput. 17 , 6713 (2021)。33. 优化的脉冲边带冷却和增强的捕获离子温度测定 AJ Rasmusson、M. D'Onofrio、Y. Xie、J. Cui 和 P. Richerme Phys. Rev. A 104 , 043108 (2021)。32. 用于径向二维离子晶体的开放式端盖叶片陷阱 Y. Xie、J. Cui、M. D'Onofrio、AJ Rasmusson、S. Howell 和 P. Richerme 量子科学与技术 6 , 044009 (2021)。 31. 囚禁离子量子比特对低剂量辐射源的敏感性 J. Cui, AJ Rasmusson, M. D'Onofrio, Y. Xie, E. Wolanski 和 P. Richerme J. Phys. B: At. Mol. Opt. Phys. 54 , 13LT01 (2021)。30. Floquet 计量泵作为受对称性或拓扑保护的光谱退化传感器 A. Kumar, G. Ortiz, P. Richerme 和 B. Seradjeh Phys. Rev. Lett. 126 , 206602 (2021)
https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=912704 ; C. Monroe, .., http://iontrap.umd.edu/wp-content/uploads/2014/10/VarennaLecture2013.pdf 彭宁阱 – Bohnet, .., Science 352, 1297 (2016); Gärttner, .., Nat. Phys., 13, 781 (2016) 线性射频阱 - K. Kim, New J. Physics 13, 105003 (2011); P. Richerme, .., Nature 511, 198 (2014);