接下来,通过与(2)相似的计算来检查平均曲率,相对于正常指向附近的共包构边界,通过与(2)的计算进行检查,将证明简化为与球形拓扑处的单个共形边界的情况。We can therefore cut away an asymptotic end of M by introducing a new boundary component { Ω= ϵ } , with ϵ sufficient small so that this new boundary component satisfies, say, H > 0 with respect to the outward normal (thus H < 0 < n − 1 with respect to the inward normal).此边界组件将成为新的,截断,多种多样的边界的一部分,但仍以m表示。
在这项工作中,我们考虑了发布驻留在黎曼流形上的差分隐私统计摘要的问题。我们提出了拉普拉斯或 K 范数机制的扩展,该机制利用了流形上的固有距离和体积。我们还详细考虑了摘要是驻留在流形上的数据的 Fréchet 平均值的特定情况。我们证明了我们的机制是速率最优的,并且仅取决于流形的维度,而不取决于任何环境空间的维度,同时还展示了忽略流形结构如何降低净化摘要的效用。我们用两个在统计学中特别有趣的例子来说明我们的框架:对称正定矩阵的空间,用于协方差矩阵,以及球面,可用作离散分布建模的空间。
GreenChar 是使用 SyngaSmart 技术生产的生物炭的名称,其特点是孔隙率高、碳浓度高。生物炭不仅代表了再生农业的有前途的工具,也是来自大气 CO2 的碳的浓缩物:生产和使用生物炭可以在农业用地上创建“工程”碳汇,其碳吸收效果与植树相同。然而,生物炭的优点之一是其碳含量稳定,不会与氧气发生反应,因此不会分解。这解释了为什么生物炭具有将大气中的碳锁定数个世纪的独特潜力,并且是仅有的三种已知安全且经济有效的碳吸收方法之一(土壤碳和碳林业)。政府间气候变化专门委员会 (IPCC) 也证实了这一点,该委员会在 2018 年 10 月 8 日发布的一份特别报告中首次将生物炭列为有前途的负排放技术 (NET)。
我们考虑了由歧管的路径空间,该路径空间是由随机流动引起的,其无限发电机是低纤维化的,但不是椭圆形的。这些发电机可以看作是具有选择补体的亚riemannian结构的亚拉普拉斯人。我们以梯度运算符在L 2中的方式介绍了路径空间上圆柱功能的梯度概念。有了该结构,我们表明,水平RICCI曲率的结合相当于路径空间上功能的几种不等式,例如梯度不等式,Log-Sobolev不平等和POINCARé不平等。因此,我们还获得了Ornstein -Uhlenbeck操作员光谱间隙的结合。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
将非线性数据建模为Riemannian歧管上的对称阳性定义(SPD)矩阵,引起了对各种分类任务的广泛关注。在深度学习的背景下,基于SPD矩阵的Riemannian网络已被证明是对电子脑电图(EEG)信号进行分类的有前途的解决方案,可在其结构化的2D特征表示中捕获Riemannian几何形状。但是,现有方法通常在嵌入空间中学习所有可用的脑电图中的空间结构,其优化程序依赖于计算 - 昂贵的迭代。此外,这些十种方法努力将所有类型的关系船编码为单个距离度量标准,从而导致一般性丧失。为了解决上述局限性,我们提出了一种riemannian嵌入银行方法,该方法将整个填充空间中常见的空间模式学习的概率分为k个缩写,并为每个子问题构建一个模型,与SPD Neural Net-net Works结合使用。通过利用Riemannian歧管上的“独立学习”技术的概念,Reb将数据和嵌入空间划分为k非重叠子集中,并在Riemannian ge-be-emetric Space中学习K单独的距离指标,而不是向量空间。然后,在SPD神经网络的嵌入层中,学习的K非重叠子集分为神经元。公共脑电图数据集的实验结果证明了尽管非平稳性质,但提出的脑电图信号的常见空间模式的拟议方法的优越性,在维持概括的同时提高了收敛速度。
量子技术中的许多理论问题可以被提出并作为约束优化问题来解决。最常见的量子机械约束,例如,等距和单位矩阵的正交性,量子通道的CPTP特性以及密度矩阵的条件,可以看作是商或嵌入的riemannian歧管。这允许使用Riemannian优化技术来解决量子力学约束优化问题。在当前的工作中,我们介绍了Qgopt,这是量子技术中约束优化的库。QGOPT依赖于量子力学约束的基础riemannian结构,并允许在保留量子机械约束的同时应用基于标准梯度的优化方法。此外,QGOPT写在张量之上,这使自动分化能够计算优化的必要梯度。我们显示了两个申请示例:量子门分解和量子断层扫描。
我们介绍了 Geomstats,这是一个开源 Python 包,用于对非线性流形(例如双曲空间、对称正定矩阵空间、变换李群等)进行计算和统计。我们提供面向对象且经过大量单元测试的实现。流形配备了黎曼度量系列以及相关的指数和对数映射、测地线和并行传输。统计和学习算法提供了对流形进行估计、聚类和降维的方法。所有相关操作都被矢量化以用于批量计算,并为不同的执行后端提供支持——即 NumPy、PyTorch 和 TensorFlow。本文介绍了该软件包,将其与相关库进行了比较,并提供了相关的代码示例。我们表明,Geomstats 提供了可靠的构建块,既可以促进微分几何和统计学的研究,又可以使黎曼几何在机器学习应用中的使用更加民主化。源代码可根据 MIT 许可证在 geomstats.ai 上免费获取。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2020年11月27日。 https://doi.org/10.1101/2020.11.25.398511 doi:Biorxiv Preprint