预计未来几年喉癌病例将大幅增加。目前的诊断途径导致许多患者被错误地转诊到紧急疑似癌症途径,给患者和医疗系统带来了过度压力。人工智能提供了一种有希望的解决方案,它能够从患者的言语中非侵入性地检测喉癌,这有助于更有效地确定转诊的优先次序,并减少对非癌症患者的不当转诊。要实现这一潜力,开放科学至关重要。该领域的一个主要障碍是缺乏开源数据集和可重复的基准,迫使研究人员从头开始。我们的工作通过引入一个基准套件来解决这一挑战,该套件包含 36 个在开源数据集上训练和评估的模型。这些模型可以在公共存储库中访问,为未来的研究奠定了基础。他们评估了三种不同的算法和三个音频特征集,提供了一个全面的基准框架。我们提出了标准化的指标和评估方法,以确保未来研究的结果一致且可比。所提出的模型包括纯音频输入和包含人口统计学和症状数据的多模式输入,使其能够应用于具有各种患者信息的数据集。通过提供这些基准,未来的研究人员可以评估他们的数据集,改进模型,并将其用作更高级方法的基础。这项工作
背景:铁铁作用是一种不同的铁细胞死亡形式,是由于活性氧(ROS)的产生引起的严重脂质过氧化引起的。乳腺癌患者的生存与Rho鸟苷三磷酸酶水解酶(GTPase)活化蛋白6(ARHGAP6)的肿瘤抑制特性相关。这项研究研究了ARHGAP6对乳腺癌螺栓吞噬作用的影响和机制。方法:使用定量RT-PCR,Western印迹和免疫荧光染色,在基因表达数据集,癌组织样品和细胞中检测到ARHGAP6表达。ARHGAP6。使用5-乙基-2-脱氧尿苷(EDU)测定法测量细胞增殖,并使用LDH细胞毒性测定法测定细胞死亡率。As indicators of ferroptosis, Fe 2+ ion content, lipid ROS, glutathione peroxidase 4 (GPX4), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1), prostaglandin-endoperoxide synthase 2 (PTGS2), solute car- rier family 7 member 11 (SLC7A11), and评估了酰基-COA合成酶长链家族成员4(ACSL4)水平。结果:在癌症组织和细胞中,ARHGAP6显然被下调。ARHGAP6的过表达降低了细胞增殖,细胞死亡升高和脂质ROS,降低了GPX4和SLC7A11,PTGS2,ACSL4和CHAC1增加,并抑制了癌细胞中的RhoA/Rock1和P38 MAPK信号。ARHGAP6敲低与ARHGAP6过表达相反的影响。ARHGAP6 mRNA水平与肿瘤组织中的铁凋亡指标呈正相关。p38 signaling抑制逆转了arhgap6敲低对逆转录病的影响,而rhoa/rock1信号抑制作用损害了arhgap6对p38 mapk信号传导的影响。在小鼠模型中,ARHGAP6以及诱导肌毒死剂RSL3合作的促进性铁氧作用增强并抑制了癌细胞的肿瘤生长。结论:这项研究表明,ARHGAP6通过通过RhoA/Rock1/p38 MAPK信号传递肿瘤来抑制乳腺癌的肿瘤生长。将ARHGAP6与诱导脂肪毒剂诱导剂相结合可能是乳腺癌治疗的有前途的治疗策略。
无人作战飞机 (UCAV) 有望成为一种颠覆性技术,它将改变从维和到区域战争等各种作战场景中的常规军事行动。在战斗中,部队通过直接战斗或间接火力与敌人交战。间接火力或防区外交战可以保护部队,并且在可用和有效的情况下是首选。无人作战飞机有望将间接火力的概念提升到一个新的水平。它们在时间敏感的目标选择方面将比导弹更灵活,在高风险环境中比有人驾驶系统更容易消耗,并且它们的持续战斗存在将比导弹或有人驾驶系统更长。随着时间的推移,无人作战飞机可能会将有人驾驶系统(如机载预警和控制系统 [AWACS] 或联合监视和目标攻击雷达系统 [JSTARS])从诸如指挥、控制和通信保护或航母战斗群空中掩护等常规任务中解放出来。它们还可能执行大部分长航时任务,例如伊拉克上空的北方守望和南方守望。最终,无人战斗机可能会变得非常先进,以至于它们在近距离支援地面部队方面比载人系统更安全,在空对空作战中比载人飞机更成功。它们有朝一日可能会加入防空武器库,对抗战略弹道导弹或巡航导弹。技术进步、国家战略和军事变革的交汇点
我们提供了一个超导量子设备设计的开源数据库,可用作定制设备的起点。每个设计都可以使用开源 Qiskit Metal 包以编程方式生成,并使用有限元电磁求解器进行模拟。我们提出了一种强大的工作流程,可在设计模拟中实现高精度。数据库中的许多设计都经过实验验证,显示出模拟参数和测量参数之间的高度一致性。我们的数据库包括一个前端界面,允许用户根据所需的电路参数生成“最佳猜测”设计。该项目为寻求制造新一类设备的研究小组提供了一个特性明确的起点,以便他们改进设计,从而降低了他们的进入门槛。超导量子比特是一个领先的量子信息技术平台。可扩展量子比特制造需要精确控制最常用于预测设备行为的哈密顿参数,例如量子比特非谐性和量子比特谐振器耦合。这反过来又需要精确定位经典电路参数(电感和电容)。这些很难解决,因为通常没有好的分析公式(甚至是近似公式)来根据设计几何预测电路参数。相反,研究人员必须根据其设计的独特边界条件对麦克斯韦方程进行数值求解。电磁场的有限元模拟可以提供相当准确的预测
摘要肠道菌群与关节炎之间的关系引起了人们的重大关注,新兴的Evi dence表明营养不良与各种形式的炎症性关节病之间存在潜在的关联。虽然OB Servational研究为关节炎患者的微生物群改变提供了有价值的见解,但建立因果关系仍然具有挑战性。受环境因素,药物效应和饮食习惯等多个混杂因素影响的观察数据不足以最终确定微生物生物变化是否与关节炎有因果关系。跨独立研究的结果的异质性进一步使解释复杂化。为了进一步支持这一假设,认为有必要的介绍随机试验是必要的,但是它们在该领域的实施列出了重大的技术局限性。实验动物模型可将视力融合到将营养不良与关节炎联系起来的潜在致病性机械障碍中,包括肠梗阻较高的功能,微生物衍生的代谢产物和分子模拟物的作用。然而,相互矛盾的发现强调了宿主菌群相互作用和建立因果关系的复杂性。调节菌群进行关节炎治疗或预防的努力已经显示出希望,但功效和应用能力仍然尚不确定。抗癌药物,饮食干预措施,饮食措施和粪便菌群移植术已探索,但是它们的临床实用性正在等待进一步的有效。总而言之,虽然肠道菌群与关节炎之间的关联越来越多,但建立因果关系仍然难以捉摸。
基于Cu 2x Hg 2 -X Gete 4合金化合物(其中0≤x≤1)中CU溶解度的程度控制载体浓度的能力使Cu 2x Hg 2 -X Gete 4在热电学领域中有趣的案例研究。CU在此过程中清楚地发挥作用,但cu确切地将CU纳入Cu 2x Hg 2 -X Gete 4晶体结构以及该如何影响载体浓度。在这项工作中,我们使用谐振能量X射线差异(REXD)实验和密度功能理论(DFT)计算的组合来阐明Cu掺入Cu 2x Hg 2-Hg 2-x Gete 4结构的性质。REXD跨Cu K边缘有助于Cu 2x Hg 2-X Gete 4合金中Cu掺入的表征,并可以直接定量抗位点缺陷。我们发现,Cu以2:1的比例代替Hg,其中Cu歼灭了空缺并与Hg原子交换。dft计算确认此结果并进一步表明Cu的掺入优先发生在Z = 1/4或Z = 3/4平面之一上,然后再填充另一个平面。此外,发现由REXD量化的Cu Hg抗位点缺陷量与实验测量的孔浓度成正比,表明CU HG缺陷是CU 2X HG 2-HG 2-x Gete 4 Elloy中调谐载体浓度的驱动力。这里发现的晶体结构之间发现的链接,或更具体的抗位点缺陷,并且可以将较高的浓度扩展到相似的阳离子 - 阳离子材料系统,并通过缺陷工程有助于改善热电和其他功能材料的发展。
通过在所有位点(A、B 和 X)进行阴离子/阳离子工程可调节性质,使该类材料对下一代器件具有吸引力。据报道,VOP 有许多不同的离子组合,其中 i)A 位主要含有 Cs + 、Rb + 、K + 或铵有机阳离子,ii)B 位含有 Sn 4 + 、Ti 4 + 、Zr 4 + 、Te 4 + 、Sb 4 + 、Pt 4 + 、Ru 4 + 或 Pd 4 + 以及 iii) X 位含有 Cl − 、Br − 或 I −。[11,15–19] 值得注意的是,只有 Pt 4 + 和 Pd 4 + 样品在水介质中是稳定的。[11,12,15] 但是,可以利用在这些化合物中采用的策略来调节所需的性质。在钛基钙钛矿 Cs 2 TiI x Br 6-x 中,通过将 x 值从 0 变为 6 来系统地调整混合卤化物材料,可使光学带隙从 1.38 eV 变为 1.78 eV。[18] 类似地,在钯基纳米粒子钙钛矿中,随着卤素从溴化物变为碘化物,带隙变窄,这些材料已成功用于光催化。[20] 在我们最近的一项工作中,提出了阴离子交换法来创建核壳异质结构,其中核和壳具有不同的卤素。[15] 这些结构已被证明可以增强光生载流子分离。同样,Cs 2 Sn 1 − x Te x I 6 中的 Sn/Te 比已被证明会影响电导率、载流子迁移率和载流子浓度。 [21] Cs 2 SbBr 6 中混合价数(III 和 V)的存在为调整光电性能提供了另一个机会。[22] 用 Te 4 + 取代 Cs 2 ZrCl 6 已显示出光致发光量子产率的显著提高。[23,24] 类似地,据报道混合 Sn/Pt 空位有序钙钛矿的发射性能有所增强。[25] 在大多数已报道的钙钛矿中,
营养物质通过血脑验室(BBB)的各种转运蛋白(BBB)积极吸收。老年大脑缺乏特定的营养,包括doco-sahexaenoic酸(DHA)的水平降低与记忆和认知功能障碍有关。要补偿脑DHA的减少,必须通过运输载体将口服的DHA从Cir-Culting Acculting Acculting Flows运输到大脑,包括主要的辅助超家族域含有领域的蛋白2A(MFSD2A)和脂肪酸结合蛋白5(FABP5),这些蛋白5(Fabp5)具有运输和非遗传性DHA。尽管众所周知,BBB的完整性在衰老过程中发生了变化,但衰老对跨BBB的DHA转运的影响尚未完全阐明。我们使用原位跨心脑灌注技术使用了2-,8-,12个和24个月大的雄性C57BL/6小鼠,以评估[14 C] DHA的脑摄取,作为非层化形式。使用大鼠脑内皮细胞(RBEC)的原发性培养物来评估siRNA介导的MFSD2A敲低对[14 C] DHA的细胞摄取的影响。我们观察到,与2个月大的小鼠相比,脑摄取[14 C] DHA的脑摄取显着降低了[14 C] DHA的脑摄取显着降低,并且MFSD2A蛋白表达降低,与2个月大的小鼠相比,MFSD2A蛋白表达降低。然而,FABP5蛋白表达随着年龄的增长而上调。[14 C] DHA的脑摄取被过量未标记的DHA抑制。将MFSD2A siRNA转染到RBEC中,将MFSD2A蛋白表达水平降低了30%,并将[14 C] DHA的细胞摄取降低20%。这些结果表明MFSD2A参与了BBB的非固定DHA运输。因此,随着衰老而发生的DHA跨BBB的下降可能是由于年龄相关的MFSD2A而不是FabP5引起的。
表面坡度不连续且悬在表面的高宽比突出特征(峰)对集成功能组件到具有复杂几何形状的物体上具有挑战性。或者,可以使用液体载体(例如浮在水中的转印膜,将物体浸入其上)将功能组件集成到具有复杂几何形状的物体上。但是,很难在复杂几何形状上精确沉积未首先在薄转印膜上形成的小组件阵列,因为与液体载体相比,每个阵列元素在薄膜上的移动相对受到限制。相比之下,打印和拾取放置过程在物体的几何形状方面更加灵活,但要求组件材料可打印或可抓取。这还要求以 3D 形式对物体进行数字映射,从而增加制造时间和成本。为了克服基于添加剂的表面改性工艺中仅使用固体或液体载体所带来的一些限制,Zabow 介绍了一种转移技术,用于将功能成分阵列以复杂的几何形状排列在目标上(例如,成分的周期性图案,与曲面相符)。该方法使用糖混合物作为可倾倒和可溶解的载体,工艺类似于制作硬糖的工艺。将加热的糖和玉米糖浆混合物冷却,但在凝固之前,将其倾倒在要整合到表面上的成分上,形成可熔的“印章”。Zabow 从倾倒和凝固步骤(铸造)开始,在此步骤中,将糖基载体在低温下倾倒在已在初始表面上以所需图案预先排列的功能成分(包括微尺度金属、聚合物和玻璃元素)上。然后,通过将印章慢慢融化在目标物体上(因此称为回流),将这些组件(现在嵌入硬化的糖混合物“印章”)转移。变形的糖混合物冷却并重新凝固后,用水冲洗掉糖混合物。由于该过程使用经历相变的载体,因此它提供了对固体载体的控制以及液体载体的几何匹配。因此,该技术消除了
急性糖尿病并发症,包括糖尿病性酮症酸中毒(DKA)和严重的低血糖(2)。这些持续存在的Challenges强调了对胰岛素以外的其他治疗策略的紧迫需求。钠 - 葡萄糖共转移蛋白2(SGLT2)抑制剂药物已革新治疗2型糖尿病,心力衰竭和慢性肾脏疾病。但是,由于DKA风险增加,它们在1型糖尿病中的使用受到限制。在大型3阶段研究中,DKA风险增加了3-4倍(3,4),这一风险仍然是美国食品和药物管理局批准该组SGLT2抑制剂的主要范围(5-7)。鉴于患有1型糖尿病的个体患者的心脏失败和慢性肾脏疾病的明显风险,并且在达到血糖目标方面的普遍困难,因此SGLT2抑制剂的潜在受益很明显。因此,解决DKA风险对于将这些好处扩展到1型糖尿病患者至关重要。问题的根源是胰高血糖素。我们的研究表明,对1型腹泻患者的SGLT2抑制疗法导致空腹胰高血糖素水平增加37%(8)。这种增加的葡萄糖提出了一个双重问题:它不仅增加了内源性葡萄糖的产生(9),从而减少了SGLT2抑制剂的葡萄糖下降作用(10,11),而且还可以增强基因酮产生,尤其是在胰岛素型条件下(12,13)。胰高血糖素受体拮抗剂(GRA)的发展提供了检验我们假设的机会。因此,我们假设将SGLT2抑制与gluc糖抑制作用结合起来可以通过减少内源性葡萄糖产生并通过抑制生酮发生来改善血糖控制。GRA Volagide-mAb是一种完全人类的单克隆抗体,可抑制胰高血糖素受体(GCGR)与胰高血糖素的相互作用,已经显示出令人鼓舞的结果。我们先前证明,Volagidemab作为1型腹膜胰岛素治疗的辅助,可改善血糖控制(HBA 1C,0.5%),并将胰岛素使用降低12%(14)。然而,GRA疗法对酮症发生的影响,尤其是在与SGLT2抑制剂的组合中,仍未得到探索。因此,结合使用辅助性SGLT2抑制剂和GRA治疗的比例很强,目的是最大化葡萄糖