我们提出了一种可组合的设计方案,用于开发用于量子模拟应用的混合量子/经典算法和工作流。我们的面向对象方法基于构建一组富有表现力的通用数据结构和方法,这些结构和方法可以编程各种复杂的混合量子模拟应用程序。我们方案的抽象核心是从对当前量子模拟算法的分析中提炼出来的。随后,它允许通过扩展、专业化和动态定制我们设计定义的抽象核心类来合成新的混合算法和工作流。我们使用与硬件无关的编程语言 QCOR 将我们的设计方案实现到 QuaSiMo 库中。为了验证我们的实现,我们在 IBM 和 Rigetti 的商业量子处理器上测试并展示了它的实用性,运行了一些原型量子模拟。
量子计算领域很年轻:Feynman在1982年介绍了量子计算的概念[3]; Shor提出了第一个实际相关的算法(用于基于整数分解的打破加密协议),该算法可以在1994年在QC上有效地计算[6]。实施实际质量控制花了一段时间。学术界和IBM之间的合作伙伴关系在1998年创建了第一个工作的2量1 QC [7],但该公司花了18年的时间才能在2016年公开访问公众5季度的QC [8]。目前,有一些QC可商购。d-wave在2011年开始出售绝热质量控制(尽管关于绝热质量控制的争论正在进行中,QC正在进行中2 [10]),目前的质量> 5000 Qubits [11]。QC也可以通过完全管理的云服务获得。IBM访问了学术和工业合作伙伴的20和50量子门的超导QC,以探索2017年的实用应用[12](2020年在2020年进行了65 Qubit机器[13])。对于非商业用途,IBM O效率为5 Q QC,通过IBM Q体验在线平台基于IBM Cloud(以及基于本地和云的模拟器)[14]。rigetti在2017年获得了8量超导的质量控制[15]。Google在2018年建立了基于72 QUITAIT GATE的超导QC [16]。IONQ在2019年引入了离子捕获的11 Quit QC [17]。 霍尼韦尔在2020年创建了被捕获的离子捕获的10量QC [18]。 Xanadu在2020年[19,20]中占8量和12克光子QC。 Microsoft通过Microsoft Quantum Development Kit提供了对拓扑QC的模拟器3的访问权限[21](并计划将来访问实际QC)。IONQ在2019年引入了离子捕获的11 Quit QC [17]。霍尼韦尔在2020年创建了被捕获的离子捕获的10量QC [18]。Xanadu在2020年[19,20]中占8量和12克光子QC。Microsoft通过Microsoft Quantum Development Kit提供了对拓扑QC的模拟器3的访问权限[21](并计划将来访问实际QC)。汇总的云服务也开始出现。例如,Amazon Web服务开始通过其2019年的制动器服务从各个供应商那里访问QC [23]。目前,它介绍了D-Wave绝热2048-和5640 Qubit QC,IONQ基于ION的基于ION-ION基于ION-ION的11 Quitit QC和Rigetti 32 Quitti Qubition QC [24]。
量子计算有两种不同的范式。第一种是基于门的量子计算,它与经典数字计算机密切相关。制造基于门的量子计算机很难,因此最先进的设备通常只有几个量子比特。第二种范式是基于 [4] 工作的量子退火。预计未来几年将开发出一台实用的量子计算机。不到十年,量子计算机将开始超越日常计算机,从而带来人工智能的突破、新药的发现和其他领域。目前,各方都在开发量子芯片,这是量子计算机的基础,例如谷歌、IBM、英特尔、Rigetti、QuTech、D-Wave 和 IonQ [5]。这些计算机的大小是有限的,最先进的基于门的量子计算机约为 70 个量子比特,而基于门的量子计算机约为 5000 个量子比特。
示例 - 在机场的优化是具有量子优势的用例,慕尼黑机场的QAR-LAB已经确定了门分配问题(差距,优化问题,将飞行证人分配给门口)。在小规模上,我们使用QAOA对D-Wave系统的量子退火硬件以及公司Rigetti和IBM公司的量子计算机进行了建模和执行。对于2号航站楼机场的生产运营,根据QUBO建模计算了12,500 QUAT。这应该是逻辑Qubit,Google 2假设其超导技术需要1,000个物理量子来实施逻辑Qubis,麦肯锡3个名字1,000-10,000,这是技术特定技术的。与Tu Delft合作,我们考虑如何有效地进行误差校正,因此需要少于10 3-10 4的物理量子。此外,连贯性时间为
量子计算机的一个备受期待的应用是作为量子多体系统的通用模拟器,正如理查德·费曼在 20 世纪 80 年代所推测的那样。过去十年,量子计算在模拟量子系统静态特性(即小分子的基态能量)方面取得了越来越多的成功。然而,在当前到不久的将来的嘈杂中型量子计算机上模拟量子多体动力学仍然是一个挑战。在这里,我们展示了在 IBM 的 Q16 Melbourne 量子处理器和 Rigetti 的 Aspen 量子处理器上成功模拟非平凡量子动力学;即通过原子厚度的二维材料中的 THz 辐射超快速控制新兴磁性。其中包括执行此类模拟的完整代码和分步教程,以降低未来对这两台量子计算机进行研究的门槛。因此,这项工作为近期量子计算机上各种量子动力学的有前景的研究奠定了基础,包括 Floquet 态的动态局部化和噪声环境中量子比特的拓扑保护。
量子算法被吹捧为解决一些经典难题(如量子力学模拟)的一种方法。所有量子算法的最终结果都是量子测量,通过量子测量可以提取和利用经典数据。事实上,许多现代混合经典方法本质上是具有短量子电路描述的状态的量子测量。在这里,我们比较和研究了从量子模拟中提取时间相关的单粒子概率密度的三种方法:直接 Z 测量、贝叶斯相位估计和谐波反演。我们在时间相关密度函数理论的潜在反演问题背景下测试了这些方法。我们的测试结果表明直接测量是更好的方法。我们还重点介绍了其他两种方法可能有用的领域,并报告了使用 Rigetti 的量子虚拟设备进行的测试。这项研究为量子计算的即将应用提供了一个起点。
有多个不同的计算范例,是基于CPU的常规计算。如今,最令人兴奋的计算范式是量子范围。它基于量子力学[1],尽管现代量子计算软件[2,3]几乎不知道量子物理学。量子计算机的硬件不同。最常见的硬件实现是超级传导(IBM,Google,Rigetti),光子(Xanadu),被困的离子(Ionq,Honeywell),Adiabatic(D-Wave)和Silicon Spin Qubits(Intel,HRL)。Amazon Braket,IBM Quantum,Xanadu和D-Wave Leap提供了对云中Quantum计算机和模拟器的访问。各种各样的硬件类型表明,这些类型尚未成为标准品,而Quantum硬件公司之间的竞争仍在进行中。未来将显示哪种量子计算硬件类型将成为主导。量子计算机不会接管经典的计算。相反,它们将是计算单元,例如GPU处理器或超级计算机,以及经典的计算机和数据库。我们可以向他们发送特定且计算复杂的问题。因此,混合方法将是实用量子计算的最现实选择。
量子计算是计算机技术的一个分支,它使用量子理论的原理来处理信息。与传统的二进制计算机不同,后者使用的比特只能是 1 或 0,而量子计算机使用的量子比特可以同时存在于多个状态。这种称为叠加的特性允许进行更复杂的计算,并成倍增加处理能力。云计算是一种通过互联网提供数据存储、服务器、网络和数据库等服务的模型。量子云计算结合了这两种技术,使人们无需拥有一台量子计算机就可以访问强大的量子计算机。IBM 是目前唯一一家提供云量子计算设施的公司,提供免费使用的 5 量子比特机器。云计算和量子计算之间的关系是协同作用。用户无需拥有量子计算机,就可以利用基于云的量子处理来完成复杂的任务,例如解码化合物、优化供应链和管理财务风险。此外,云量子计算通过处理更复杂的数字来实现更安全的加密方法。云量子计算的应用包括教育,它可以用来向学生传授量子计算概念。借助云量子计算机,量子物理教育将变得更加容易。学生无需物理设备即可学习和进行实验。该领域具有巨大的发展潜力,研究人员可以利用云量子计算机来测试理论和开展研究。马丁·雷诺兹 (Martin Reynolds) 表示,由于特定的房间条件和需要新的编程技能,实施基于云的量子计算具有挑战性。IT 团队必须开发专业知识来微调算法和硬件。尽管面临挑战,但云提供商将成为首批提供量子即服务的提供商之一,为开发人员提供访问量子处理的方法。如果实际问题能够得到解决,量子云计算可能会产生与人工智能类似的深远影响。量子力学支持开发创新应用程序,包括量子算法的实施和测试。研究人员可以利用基于云的资源进行实验、测试理论和比较架构。此外,基于云的平台有助于创建向人们介绍量子概念的游戏。在数字化转型领域,可以使用基于云的量子资源处理和预测数 TB 的大数据。 qBraid Lab、Quandela Cloud、Xanadu Quantum Cloud、Rigetti Computing 的 Forest、Microsoft 的 LIQUi| 和 IBM Q Experience 等基于云的平台提供对各种量子设备和模拟器的访问。这些平台提供编程语言、开发框架和示例算法的工具。一些值得注意的基于云的量子资源包括:* qBraid Lab:一个提供软件工具和访问 IBM、Amazon Braket、Xanadu、OQC、QuEra、Rigetti 和 IonQ 量子硬件的平台。 * Quandela Cloud:第一台可通过 Perceval 脚本语言访问的欧洲光子量子计算机。 * Xanadu Quantum Cloud:一个基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:一个用于量子计算的工具套件,具有编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:一个用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个 transmon 量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q 网络提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两款硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特传输处理器)和 QX(荷兰国家超级计算机 Cartesius 上的量子模拟器后端,最多可模拟 31 个量子比特)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的协作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。欧洲首款可通过 Perceval 脚本语言访问的光子量子计算机。 * Xanadu Quantum Cloud:基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:量子计算工具套件,包含编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:量子计算软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:通过基于 Python 的 Qiskit 框架或图形界面提供量子硬件和 HPC 模拟器访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两个硬件芯片提供基于云的量子计算的平台。 Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。欧洲首款可通过 Perceval 脚本语言访问的光子量子计算机。 * Xanadu Quantum Cloud:基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:量子计算工具套件,包含编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:量子计算软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:通过基于 Python 的 Qiskit 框架或图形界面提供量子硬件和 HPC 模拟器访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两个硬件芯片提供基于云的量子计算的平台。 Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。和示例算法。 * 微软的 LIQUi|:一种用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。Qutech 是欧洲第一个为两个硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,它们托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的合作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。和示例算法。 * 微软的 LIQUi|:一种用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。Qutech 是欧洲第一个为两个硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,它们托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的合作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。这些平台为用户提供了一系列工具和资源,用于探索和开发量子算法和应用。文章还提到了几篇与基于云的量子计算相关的研究论文和出版物,凸显了人们对该领域日益增长的兴趣。这些平台为用户提供了一系列工具和资源,用于探索和开发量子算法和应用。文章还提到了几篇与基于云的量子计算相关的研究论文和出版物,凸显了人们对该领域日益增长的兴趣。
量子计算机的一个备受期待的应用是作为量子多体系统的通用模拟器,正如理查德·费曼在 20 世纪 80 年代所推测的那样。过去十年,量子计算在模拟量子系统静态属性(即小分子的基态能量)方面取得了越来越多的成功。然而,在目前到不久的将来,在嘈杂的中型量子计算机上模拟量子多体动力学仍然是一个挑战。在这里,我们展示了在 IBM 的 Q16 Melbourne 量子处理器和 Rigetti 的 Aspen 量子处理器上成功模拟非平凡量子动力学;即通过原子厚度的二维材料中的太赫兹辐射对新兴磁性进行超快速控制。其中包括执行此类模拟的完整代码和分步教程,以降低未来对这两台量子计算机进行研究的门槛。因此,这项工作为在不久的将来的量子计算机上进行各种量子动力学的有前景的研究奠定了基础,包括弗洛凯态的动态局部化和噪声环境中量子比特的拓扑保护。
量子密码系统的密码分析通常涉及寻找针对底层协议的最佳对抗攻击策略。量子攻击建模的核心原则通常归结为对手克隆未知量子态并由此提取有意义的秘密信息的能力。由于电路深度较大或在许多情况下未知,显式最佳攻击策略通常需要大量计算资源。在这里,我们介绍了变分量子克隆 (VarQlone),这是一种基于量子机器学习的密码分析算法,它允许对手使用混合经典量子技术训练的短深度量子电路获得最佳近似克隆策略。该算法包含具有理论保证的具有操作意义的成本函数、量子电路结构学习和基于梯度下降的优化。我们的方法能够端到端发现硬件高效的量子电路来克隆特定的量子态系列,我们在 Rigetti Aspen 量子硬件上的实现中展示了这一点。我们将这些结果与量子密码原语联系起来,并推导出由 VarQlone 促进的显式攻击。我们期望量子机器学习将成为改进当前和未来量子加密协议攻击的资源。