[a] M. Alsufyani、J.Tian、I. McCulloch 教授 牛津大学化学系 牛津,OX1 3TA,英国 电子邮件:Maryam.alsufyani@chem.ox.ac.uk、Iain.mcculloch@chem.ox.ac.uk。[b] M. Stoeckel、S. Fabiano 教授。林雪平大学科技系 诺尔雪平,SE-60174,瑞典 [c] X. Chen、RK Hallani、K. Regeta、C. Combe、H. Chen、I. McCulloch 教授 物理科学与工程部 阿卜杜拉国王科技大学(KAUST) Thuwal,23955-6900,沙特阿拉伯 [d] K. Thorley 肯塔基大学化学系 列克星敦,肯塔基州 40506-0055,美国 [e] Y. Puttisong 林雪平大学物理、化学和生物系 林雪平,SE-58183,瑞典 [f] X. Ji、D. Meli、BD Paulsen、J. Rivnay 教授 生物医学工程系、材料科学与工程系。西北大学 2145 Sheridan Road, Evanston, IL 60208, USA [g] J. Strzalka X 射线科学部阿贡国家实验室 Lemont, IL 60439, USA [h] Prof. J. Rivnay Simpson Querrey Institute 西北大学芝加哥, IL 60611, USA
目的:在图像引导的神经外科手术中,联合配准的术前解剖、功能和扩散张量成像可用于安全切除脑部重要区域的脑肿瘤。然而,脑部在手术过程中会变形,尤其是在切除肿瘤的情况下。术前图像数据的非刚性配准 (NRR) 可用于创建配准图像,该配准图像可捕捉术中图像中的变形,同时保持术前图像的质量。本文利用临床数据报告了几种处理脑变形的非刚性配准方法的准确性和性能比较结果。提出了一种新的自适应方法,该方法可自动去除切除肿瘤区域中的网格元素,从而处理切除时的变形。为了改善用户体验,我们还提出了一种将混合现实与超声、MRI 和 CT 结合使用的新方法。
摘要:为研究上下旋翼干扰效应以及进给比、轴倾斜角和升力偏移对缩比同轴刚性旋翼系统气动性能的影响,对缩比同轴刚性旋翼系统在悬停和稳定前飞过程中的气动性能进行了实验研究。旋翼系统采用直径2 m、四叶片上下无铰链旋翼,安装在同轴旋翼试验台上。实验在中国空气动力研究与发展中心(CARDC)的φ3.2 m风洞中进行。旋翼系统在0°~13°的总距范围内进行了悬停测试,并在进给比高达0.6的情况下进行了前飞测试,重点关注了轴倾斜角和升力偏移扫掠。为了使共轴旋翼的运行方式与实际飞行方式相似,悬停飞行时将扭矩差调整为零,前飞时保持恒定升力系数。在同轴旋翼中以相同的螺距角设置进行了孤立单旋翼配置试验。悬停试验结果表明,下旋翼的品质因数 (FM) 值低于上旋翼,且均低于孤立单旋翼。此外,在相同的叶片载荷系数 (C T / σ) 下,同轴旋翼配置可以获得更好的悬停效率。前飞时,有效升阻比 (L/De) 为
版权所有02/2021 Redwire Corporation。Redwire保留进行更改的权利,而无需进一步通知此处的任何产品。Redwire不对其产品适合任何特定目的的适用性做出任何保证,代表性或保证,也没有承担任何责任。“典型”参数,包括“典型”,必须由客户的技术专家为每个客户应用程序验证。Redwire不会在其专利权或他人的权利下传达任何许可证。Redwire产品未设计,打算或授权用作系统中的组件或任何其他应用,其中Redwire产品可能会造成可能发生人身伤害或死亡的情况。应购买或使用Redwire产品用于任何此类预期或未经授权的申请,买方应赔偿并持有Redwire及其官员,雇员,子公司,子公司,附属机构和分销商无害的索赔,成本,成本,损害,损害和费用以及任何与此类造成的损害,即使索赔,即使有任何损害,即使是个人损益,或者有任何损害,即索赔声称,Redwire认为该零件的设计或制造是疏忽大意的。redwire是一个平等的机会/平权行动雇主。该文献受所有适用的版权法的约束,并且不会以任何方式转售
1机械工程系,魁北克大学氢和研究所的机械工程系,3351 BOULEVARD DES FORGES,TROIS-RIVIères,QC G8Z 4M3,加拿大,电子邮件,电子邮件:nadjet.zioui@uqqtr.ca 2 Ezzouar,16111年,阿尔及利亚,阿尔及利亚,电子邮件:yousra.mahmoudi@uqtr.ca 3城市液压部,国立液压学院Arbaoui Abdallah,29号,布里达路线29,阿尔及利亚4Véo4Véo项目,Sherbrooke,Sherbrooke,2500 de l'电子邮件:aicha.mahmoudi@usherbrooke.ca 5流程控制实验室,国家理工学院,阿尔及利亚,阿尔及利亚,电子邮件:mohamed.tadjine@g.enp.enp.edu.dz 6工程与科学学院,挪威西部挪威大学应用科学大学,北挪威大学,北北,5063,5063,Email,电子邮件: say.bentouba@hvl.no
在科学应用中,物理学家和工程师都利用了刚性和柔性波导。许多测试实验室从事需要微波能量的研究。同步源,光源,粒子加速器和线性加速器(Linac)各自进行设施范围且特定于系统的升级。这些升级使科学家能够跟上高能物理学和核融合研究的苛刻性质。在系统升级和设施扩展期间,在具有空间限制和特定机械要求的区域中采用了被动微波组件。常见的是,在长长的波导中,两种类型的矩形波导 - 刚性和挠性。在符合严格要求的情况下,实验室在其波导运行中使用了较短的弹性指导。这些部分缓解了RF系统的其他机械运动的振动和支持。这些运行在整个实验室中延长,从微波源(Klystron或固态放大器)到腔。
将可拉伸电极或装置从一种基底转移到另一种薄弹性体上是一项艰巨的任务,因为弹性印章通常会在脱粘界面处产生巨大的应变,超出电极的拉伸极限。如果印章是刚性的,则不会发生这种情况。然而,刚性材料不能用作可拉伸电极的基底。在此,具有可调刚性的丝素蛋白(通过控制相对湿度,杨氏模量可以从 134 kPa 变为 1.84 GPa)用于将高度可拉伸的金属网络转移为高度可塑的表皮电极。丝素蛋白印章在剥离过程中被调节为刚性,然后在层压在湿润的人体皮肤上时作为基底变得柔软且高度可拉伸。此外,表皮电极在连接超过 10 天后没有表现出皮肤刺激或炎症。与商用 Ag-AgCl 凝胶电极相比,高柔顺性可降低界面阻抗,并在测量肌电信号时降低电极的噪声。在转移的不同阶段调整刚度的策略是一种通用方法,可以扩展到转移其他可拉伸电极和表皮电子器件、人机界面和软机器人。
24小时以确保平衡。4。HDPC乙烯基木板只有在其他交易完成后才能安装,并且已经清理并清除了可能会损坏完成安装的碎屑。5。不需要额外的填充,因为木板的背面有一个附着的填充物。6。在安装前检查地板是否有损坏,缺陷或阴影问题;切割和/或安装后,视觉缺陷的索赔不会被接受。7。在安装过程中将木板从几个不同的纸箱中混合并安装,以确保随机外观。8。留下1/4英寸的间隙,以围绕地板的整个周长膨胀。9。t造型,以防止由于毗邻的房间而导致的分离或屈曲问题。10。应在必要时使用阴影或百叶窗来保护地板免于直接暴露于紫外线。11。所有地板都会刮擦,在移动或在地板上运输物品时请保持谨慎,因为划痕不是
• 拥有战术编队经验 – 旅及以上。可能需要多个战斗、战斗支援和战斗服务支援学科或同等学术或国防工业职能领域。• 确定反 IED 能力差距并就潜在解决方案提供建议。• 将新兴的反 IED 技术整合到当前战术、技术和程序中,并根据需要传播新的 TTP。• 就与联合 IED 击败计划相关的行动与作战司令部、联合组织和 OGA 进行对接。• 协助识别、培训和整合 IED 击败对抗技术。• 根据需要向 JIEDDO OPS 提供更新,以确保 JIEDDO 战略和联合反 IED 通用作战图的相关性。• 为 JIEDDO 战略行动的执行提供支持,支持国防部内多种联合 IED 防御解决方案的整合。• 提供运营记录管理功能。• 使用可用的服务自动化系统协助分析 COCOM 对部队的请求以及与 COCOM 反 IED 支持要求相关的已批准部署命令。联系 Rigid Tactical:Jennifer.Bollinger@rigidtactical.com 到期日:2019 年 10 月 31 日
附有详细的附录。附录 A 和 B 描述了制造商可以实施的两个产品保证计划。附录 A 包含传统的 QPL 产品保证计划。附录 B 是一种可选的质量管理方法,使用 MIL-PRF-31032 中提到的质量审查委员会概念来修改本规范中提供的通用验证标准。附录 C 提供统计抽样以及基本的测试和检查程序。附录 D 是可选的,可用于生产按照过时的设计标准设计的印刷线路板(见 6.4.1)。附录 D 也可用作根据附录 A 的测试和检查为旧设计或现有设计制定测试计划的指南。附录 E 是可选的,描述了用于评估可焊表面氧化水平的替代程序。该程序涉及使用电化学还原技术来确定镀通孔上的氧化物的类型和数量。