A.“ T1,T2和T3”电动机导线通过滑动环和刷子连接到转子绕组,“ M1,M2和M3”电动导线直接连接到定子绕组。B.“ T1,T2和T3”电动机导线直接连接到转子绕组,“ M1,M2和M3”电动导线通过滑环和刷子连接到定子绕组。C.“ M1,M2和M3”电动机导线通过滑环和刷子连接到转子绕组,“ T1,T2和T3”电动导线直接连接到定子绕组。D.“ M1,M2和M3”电动机导线直接连接到转子绕组,“ T1,T2和T3”电动机导线通过滑环和刷子连接到定子绕组。正确答案:C
沸石是一种具有三维晶体结构的微孔铝硅酸盐矿物,其具有规则排列的大型开放空腔,形成笼状和通道。空腔由沸石的结构组成1,2)组成。它们的骨架由(SiO 4 ) 4-和(AlO 4 ) 5-四面体组成,两者都可以构建由单环4-、6-和8-,或双环4-4、6-6和8-8或支环4-1、5-1等组成的二级结构单元3)。骨架结构类型将决定表面积、孔径和孔隙率4)。与其他矿物相比,沸石具有多种优势,尤其是其作为离子交换剂、催化剂和吸附剂的功能。印度尼西亚四面环海,火山环纵横交错,具有丰富的天然沸石矿物资源 5, 6) 。沸石可用作催化剂、离子交换和吸附剂 6) 。一般而言,沸石矿物具有以下化学式 7) :
- CLIC阻尼环区域协调员(自2007年以来) - CLIC-ILC合作工作组的联合主席(2008-2013) - 欧盟Tiara WP6的协调员SLS垂直垂直发射率(2011-2014)的协调员(2011- 2014) - 低廉的协调员 - domecornitiator-domecornitiation-domecorter-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-card222222222 2 Card 2 Card222222 2戒指具有Aries的超低散发(规则)(2017-2021) - 在高亮度同步仪中I-Fips of I-FAST的WP源(自2021年以来)(自2021年以来的成员(自2012年以来)成员(自2012年以来)(自2012年以来)(自2012年以来)(自2012年以来)(自2012年以来)(自2012年以来)(自2012年以来, - FCCEE喷油器系统的设计协调员(自2014年以来) - ESP设计研究的成员,提供轻型暗物质实验(LDMX)(自2017年以来)•教学任命
叠加原理 – 相干性 – 时间相干性和空间相干性 – 光干涉的条件。菲涅尔双棱镜 – 光波长的测定 – 反射时相位的变化。由于反射和透射光(余弦定律)而导致的平面波在薄膜上的斜入射 – 薄膜的颜色 – 具有两个非平行反射表面的薄膜的干涉(楔形薄膜)。金属丝直径的测定,反射光中的牛顿环。迈克尔逊干涉仪,使用牛顿环和迈克尔逊干涉仪测定单色光的波长。
抽象戒指签名是Rivest,Shamir和Tauman引入的加密原语(Asiacrypt 2001),在动态形成的用户组中提供签名者匿名。最近的进步集中在基于晶格的结构上,以提高效率,尤其是对于大型签名环。但是,当前的最新解决方案遭受了明显的开销,尤其是对于较小的环。在这项工作中,我们提出了一种基于NTRU的新型环形签名方案甘道夫(Gandalf),该方案针对小环。与线性环签名方案猛禽相比,我们的量子后方案的特征尺寸减少了50%(ACNS 2019)。对于二大的环,我们的签名大约是二元尺寸(Crypto 2021)的四分之一,这是另一种线性方案,并且对戒指的戒指更加紧凑,最高为7号。与Smile Smile相比(Crypto 2021),我们的签名更加紧凑,最多为26。,特别是对于二大的环,我们的环签名仅为1236字节。此外,我们探索了环号的使用来获得身份验证的钥匙封装机制(AKEMS),这是MLS和TLS最近使用的HPKE标准背后的原始性。我们采取了一种精细的方法,可以在AKEM内部正式的发送者可否认性,并试图定义最强的可能的观念。我们的贡献扩展到了来自KEM的可拒绝AKEM的黑盒结构,以及针对二号环的环形签名方案。我们的方法达到了最高水平的机密性和真实性,同时保留了两个正交设置中最强的可否认性形式。最后,我们为我们的方案提供了参数集,并表明我们拒绝的AKEM在使用环形签名方案实例化时会产生2004 BYTES的密文。
摘要:我们结合线性粘弹性测量和建模来探索相同分子量的环状和线性聚合物共混物在环组分体积分数较低(0.3 或更低)范围内的动力学。由于线性链的运动,应力松弛模量受到环和线性组分的约束释放 (CR) 的影响。我们开发了一种基于 CR 的环-线性共混物模型,该模型可以预测环组分分数较低范围内的应力松弛函数,与实验结果高度一致。被线性链缠结所困的环只能通过线性链诱导的 CR 来松弛,而且环的松弛速度比线性链慢得多。预计在环重叠体积分数 ϕ R * 下,共混物的相对粘度 η ( ϕ R * )/ η L 相对于线性熔体粘度 η L 的增加与环分子量 M w,R 的平方根成比例增加。我们的实验结果清楚地表明,通过添加少量环状聚合物,可以同时提高线性聚合物熔体的粘度和结构松弛时间。这些结果不仅为 CR 工艺的物理原理提供了根本性的见解,还提出了通过添加环状聚合物来微调线性聚合物流动性能的方法。