摘要:现今,研究、建模、仿真和实现类脑系统以重现大脑行为已成为迫切的需求。本文通过建模两个基于霍普菲尔德神经网络(HNN)的神经网络模型来模拟神经爆发与同步。第一个神经网络模型由四个神经元组成,对应实现神经爆发放电。理论分析和数值模拟表明,简单的神经网络可以产生丰富的爆发动态,包括每次爆发有不同的脉冲的多个周期性爆发放电,多个共存的爆发放电,以及具有不同幅度的多个混沌爆发放电。第二个神经网络模型使用由两个以上小神经网络组成的耦合神经网络来模拟神经同步。基于李雅普诺夫稳定性理论从理论上证明了耦合神经网络的同步动力学。大量仿真结果表明耦合神经网络能够产生依赖于突触耦合强度的不同类型的同步行为,如反相突发同步、反相尖峰同步、完全突发同步等。最后,设计并实现了两个神经网络电路,展示了所构建神经网络的有效性和潜力。
图 1. 6,6'-二硝基-2,2'-联苯甲酸。两个芳环由单键连接,这通常允许环围绕键轴自由旋转。但羧基和硝基在空间上干扰旋转,导致不可叠加的“阻转异构体”。顶部:化学结构的常见表示;底部:粗线表示芳环不是平面的。一些天然存在的具有药用特性并用于药物治疗应用的阻转异构体的例子包括从热带蕨类植物 Kniphofia foliosa 根中获得的化学结构相对较小的白三烯代谢选择性抑制剂 Knipholone(图 2 )[2],以及从土壤细菌 Amycolatopsis orientalis(东方链霉菌)中获得的化学结构非常大的抗生素万古霉素(图 2 )[3]。
摘要。本文采用计算机建模方法,考虑优化基于热管和冷却环的被动空气系统设计,以冷却大功率 LED 灯具。研究了冷却系统的热特性和质量特性,设计参数包括环间距离、环材料厚度和热负荷。结果表明,为了使 LED 光源外壳温度最小,冷却环之间的最佳距离应为 6 毫米,但在这种情况下,冷却系统的质量并不最小。为了降低灯具质量,选择冷却环之间的距离等于 8 毫米是合理的。这样,光源温度仅增加 1.8°С,即 2.2%,而冷却系统的质量减少 1357 克,即 20.5%。同时,将环厚度从 2 毫米降低到 0.8 毫米,还可以将质量减少 2700 克,即 48.6%。然而,这样做时 LED 光源外壳的温度会升高 5.9°С 。所提供的基于热管的冷却系统在 LED 光源晶体最高温度 135.5°С 下分散 500W 热功率时能够提供 0.131°С/W 的热阻。已经制定了开发冷却系统的应用建议。
由于核苷酸的杂环,核酸会吸收紫外线 (UV) 光;糖磷酸骨架对吸收没有贡献。DNA 和 RNA 的最大吸收波长均为 260nm (λmax = 260nm),每个碱基都有一个特征值。
图1顶部:胚胎神经管的机理。左:爆炸式阶段(胚胎是平坦的)。中间:在神经管卷中(扭结已经出现在褶皱中)。右,神经管表现出细胞带,脑囊泡(BV)被山谷(箭头)隔开。底部,可以直接成像细胞的圆形皮带(透明),皮带形成横向环(箭头),带有沿周长径向堆叠的细胞(源自周长)(从参考文献1)。在发育的早期阶段1)。与植物中一样,这是从细胞分裂的机理中继承的。,由于存在肌肉样分子,组织在动物中更为活跃。动物形成通过卷起这种模式来进行。这会产生一个空心管。管内的压力扩张了大脑,直到形成囊泡像疝气一样刺激。文森特·弗勒里(Vincent Fleury1对,图。1底部)。 这就是为什么早期大脑作为电缆隔开的气球的离合器的原因。 血管反映了胚胎的特定结构或质地(图。 2)。 图2血管的模式反映了胚胎质地(脑囊泡中的小毛细血管,山谷中的较大血管,从参考文献 1)。1底部)。这就是为什么早期大脑作为电缆隔开的气球的离合器的原因。血管反映了胚胎的特定结构或质地(图。2)。图2血管的模式反映了胚胎质地(脑囊泡中的小毛细血管,山谷中的较大血管,从参考文献1)。
极化储存环和 FEL 通常具有水平极化矢量,这通常需要在垂直平面上散射。LCLS-II 硬 X 射线波荡器具有垂直极化矢量。圆极化对于磁测量来说是可能的,并且很重要。
KEKB 是一台 8x3.5 GeV 非对称电子-正电子对撞机,旨在实现质心能量为 10.58 GeV 的电子-正电子对撞。其使命是支持高能物理研究计划,研究 B 介子衰变中的 CP 破坏和其他主题。其目标光度为 10 34 cm~ 2 s~ 1 。KEKB 经日本政府批准,于 1994 年 4 月正式开始建设,为期五年。KEKB 的两个环(低能环 LER 用于 3.5 GeV 的正电子,高能环 HER 用于 8 GeV 的电子)将建在现有的 TRISTAN 隧道中,隧道周长为 3 公里。TRISTAN 的基础设施将得到最大程度的利用。利用较大的隧道宽度,KEKB 的两个环将并排建造。由于束流轨迹的垂直弯曲往往会增加垂直束流发射率,因此其使用量被最小化。
组:群体,正常亚组,商组,同构定理,Cayley定理的同态。广义的Cayley定理,Cauchy的定理,小组动作,Sylow定理及其应用。正常和亚正常序列,组成序列,可解决的组和尼尔植物组,Jordan-Holder定理及其应用。戒指:理想和同构,素数和最大理想,商领域和整体域,多项式和功率系列环。划分理论:欧几里得领域,主要理想领域,独特的分解域,高斯定理。Noetherian和Artinian戒指,希尔伯特基础定理,Chhen的定理。模块:具有身份,循环模块,自由模块,基本结构定理的左右模块,用于有限生成的模块,并应用于有限生成的阿贝尔组。参考: