医学图像分析的主要目标是识别解剖结构的患病区域,以便医生更好地了解病变的进展情况。医学图像分析涉及四个主要阶段:(1) 图像预处理;(2) 分割;(3) 特征提取;(4) 模式识别或分类。预处理是增强图像信息以便进行后续处理或消除照片中不需要的失真的过程。将区域(例如肿瘤和器官)分离以进行进一步研究的技术称为分割。特征提取是从感兴趣区域 (ROI) 中仔细选择信息以帮助识别它们的过程。分类有助于根据提取的特征对 ROI 进行分类 [2][3]。
尺寸(图 3)(七个 ROI)。与使用掩蔽的方法相比,该方法可以通过最小化不属于皮肤的像素数量来优化信噪比,而使用掩蔽的方法在某些条件下是近似的。我们选择空间 L * u * v 的色度分量 * u 来形成 PPG 信号。*u 分量代表红色和绿色之间的颜色,v* 代表黄色和蓝色之间的颜色。根据血红蛋白吸收率最好的波长范围,通过分析色度 *u 更容易观察到光电容积描记变化(我们选择此颜色空间的原因)。将为捕获的每个帧计算空间平均值,从而在我们的 PPG 信号中形成一个点。对于 N 个捕获的帧,将形成 N 个点的信号。对每个 ROI 进行此空间平均,为每个 ROI 创建一个 PPG 信号:在我们的例子中,我们将有七个 PPG 信号。当整个表面未被均匀照亮时,可获得最佳质量的信号:当其他区域的信号很少或没有可用信号时,其中一个区域可能具有非常好的信号。
摘要。多模式图像的使用通常可以改善分段。但是,由于临床限制,完整的多模式数据集通常不可用。为了解决这个问题,我们提出了一个新颖的mul-timodal分割框架,该框架可通过使用利益区域(ROI)细心的模态完成,可以使缺少模态固定。我们使用ROI专注的跳过连接专注于与分割相关的收件,以及结合肿瘤ROI的关注点和分割概率图的关节歧视者,以学习与分割与分割相关的共享潜在表示。我们的方法在脑部分割挑战数据集中得到了285例,该数据集的全部肿瘤,肿瘤核心和增强肿瘤的三个区域。它也是在缺血性卒中病变分割挑战数据集上的带有28例梗塞病变的阀门。我们的方法在强大的多模式分割中优于最先进的方法,分别为三种类型的脑肿瘤区域的平均骰子分别为84.15%,75.59%和54.90%,中风病变的平均骰子为48.29%。我们的方法可以改善需要多模式图像的临床工作流程。
$:ECWTP的总直接收益$ 1,058.31.26亿美元•总直接收益的年度现值:1.1759亿美元•年度现值ROI:33X
摘要:背景:基于静息态功能磁共振成像(rs-fMRI)的功能性脑网络(FBN)在识别脑部疾病,如自闭症谱系障碍(ASD)方面显示出巨大的潜力。因此,近年来提出了许多FBN估计方法。现有的大多数方法仅从单一视角对大脑感兴趣区域(ROI)之间的功能连接进行建模(例如,通过特定策略估计FBN),无法捕捉大脑中ROI之间的复杂相互作用。方法:为了解决这个问题,我们提出通过联合嵌入融合多视角FBN,这可以充分利用通过不同策略估计的多视角FBN的共同信息。更具体地说,我们首先将用不同方法估计的FBN的邻接矩阵堆叠成一个张量,并使用张量分解来学习每个ROI的联合嵌入(即所有FBN的共同因子)。然后,我们使用 Pearson 相关性计算每个嵌入 ROI 之间的连接,以重建新的 FBN。结果:使用 rs-fMRI 数据在公共 ABIDE 数据集上获得的实验结果表明,我们的方法优于自动 ASD 诊断中的几种最新方法。此外,通过探索对 ASD 识别贡献最大的 FBN“特征”,我们发现了 ASD 诊断的潜在生物标志物。所提出的框架实现了 74.46% 的准确率,通常优于比较的单个 FBN 方法。此外,与其他多网络方法相比,我们的方法实现了最佳性能,即准确率提高了至少 2.72%。结论:我们提出了一种通过联合嵌入的多视图 FBN 融合策略,用于基于 fMRI 的 ASD 识别。从特征向量中心性的角度来看,所提出的融合方法有一个优雅的理论解释。
图1(a)研究访问。(b)使用Sigmoidal拟合(D)示意图(d)在DLPFC中的九个区域(ROI)和LPC中的八个ROI的单个试验(C)设置大小的任务示意图,用作潜在的TMS目标(颜色代表与哈佛牛津的颜色不同)。(e)结合DWI和fMRI的靶向方法的例证。(f)用于定义刺激目标并在每个TMS访问上输入的随机表。(g)。RTMS参数RTMS参数
摘要 - 尽管许多研究已成功地将转移学习应用于医学图像分割,但是当有多个源任务可转移时,很少有人研究了选择策略。在本文中,我们提出了一个基于知识的知识和基于可传递性的框架,以在大脑图像分割任务集合中选择最佳的源任务,以提高给定目标任务上的转移学习绩效。该框架包括模态分析,ROI(感兴趣的区域)分析和可传递性效率,以便可以逐步对源任务选择进行。特别是,我们将最先进的分析转移能力估计指标调整为医学图像分割任务,并进一步表明,基于模态和ROI特征的候选源任务可以显着提高其性能。我们关于脑物质,脑肿瘤和白质超强度分割数据集的实验表明,从同一模式下的不同任务转移通常比在不同方式下从同一任务转移的实验更成功。此外,在相同的方式中,从具有更强的ROI形状相似性与目标任务的源任务转移可以显着提高最终传输性能。可以使用标签空间中的结构相似性指数捕获这种相似性。索引术语 - 转移学习,医学图像分析,来源选择I。
摘要 - 识别和利用各种生物标志物跟踪阿尔茨海默氏病(AD)的进展已受到许多最近的关注,并使帮助临床医生迅速做出了迅速的决定。传统的进程模型着重于从MRI/PET图像(例如区域平均皮质厚度和区域量)中提取感兴趣区域(ROI)中的形态生物标志物(ROI)。它们是有效的,但忽略了随着时间的流逝,大脑ROI之间的关系会导致协同的恶化。用于探索这些生物标志物之间的协同恶化关系,在本文中,我们提出了一种新型时空相似性度量的多任务学习方法,可有效预测AD的进展并敏感地捕获生物标志物之间的关键关系。特别是,我们首先定义了一个时间量度,用于估计生物标志物变化随时间变化的幅度和速度,这表明趋势变化(时间)。将这一趋势转换为矢量,然后我们比较了统一的矢量空间(空间)中生物标志物之间的这种变异性。实验结果表明,与直接基于ROI的特征学习相比,我们提出的方法在预测疾病进展方面更有效。我们的方法还使执行纵向稳定性选择以确定生物标志物之间不断变化的关系,这些关系在疾病进展中起着关键作用。我们证明,皮质体积或表面积之间的协同恶化的生物标志物对认知预测具有显着影响。索引术语 - Alzheimer疾病,脑生物标志物相关性,余弦相似性,多任务学习