摘要。在自然环境中具有综合性运作的情境意识到的人工药物面临着几个挑战:空间意识,对象效果检测,动态变化和不可预测性。一个关键的挑战是代理商识别和监视与其目标有关的环境要素的能力。我们的研究介绍了一种用于反应性机器人技术的神经符号模块化体系结构。我们的系统结合了在环境和图像处理技术(如光流)上执行对象识别的神经组件,以及符号表示和推理。通过将图像示意性知识整合在本体论结构中,推理系统基于体现认知范式的基础。该本体可用于创建有关感知系统的查询,决定符合的问题,并推断从感知数据中得出的实体功能。推理和图像处理的组合允许代理对正常操作的看法,并发现针对特定相互作用中涉及的对象的一部分的新概念。发现的概念允许机器人自主获取培训数据并只是其符号的感知来识别零件,并通过将搜索重点放在这些相关对象的零件上,从而为更复杂的任务进行计划。我们在模拟世界中演示了我们的方法,在模拟世界中,代理商学会了识别涉及支持关系的对象的一部分。虽然代理商最初没有概念,但通过观察从钩子上悬挂的支持对象的示例,但它学会了认识到建立支持所涉及的部分并能够计划支持关系的建立/破坏。这可以通过系统的方式通过观察来扩展其知识的能力,并说明了将深层推理与动态设置中的反应性机器人技术相结合的潜力。
摘要 - 今年,由中学和高中学生组成的团队Inspion的新团队正在建立未来几年的STEM管道。凭借更少的机器人经验,该团队利用过去的课程和能力,并将部署更有能力的自动驾驶水下汽车(AUV)Onyx来执行任务,而较小的AUVGræy,Græy,正在用作测试台,并且有推动者可以展示Intersub交流。团队集成了一个新的光纤陀螺仪(FOG)和多普勒速度日志(DVL)算法,该算法与水力机,摄像头和一个机上惯性测量单元(IMU)相结合,可实现更准确的导航。团队继续改善软件,并结合了更强大的本地化算法。团队的开源Robosub 101指南[1]已更新以加速和文档学习作为全球新RoboSub参与者的参考文献文档。
软机器人利用合规的材料以灵活的方式与复杂和不确定的环境相互作用,从而可以操纵脆弱的物体并与生物的安全相互作用。它们的适应性推动了医学和制造等领域的创新。设计软机器人即使对于经验丰富的设计师,由于其非线性材料,多物理耦合,多个身体与环境之间的复杂相互作用及其许多自由度,即使对于经验丰富的设计师来说也很具有挑战性。这解释了为什么软机器人技术中的第一批设计受到自然的启发,模仿了诸如蠕虫或章鱼之类的软动物。软体能够符合硬对象并重新配置DI FF任务,然后将控制的重要部分委派给身体。与刚性机器人不同,体现的智能仍然是软机器人技术中的新兴话题。但是,很明显,可以很好地适应其环境的代理商可以快速学习智能行为。本文摆脱了传统的训练控制和敏捷性的关注,旨在通过将人工智能与软机器人设计联系起来来应对控制挑战。软机器人技术领域在建模,控制和设计方面提出了许多挑战。Inria Lille的除霜团队已经开发了几种有限元方法(FEM)的工具来应对这些挑战,从而可以准确地模拟软机器人。这些工具已用于低级控制,并在制造前评估了软机器人设计。此探索需要解决一些挑战。在这项工作中,应用了各种基于FEM的仿真和数值优化工具来探索软机器人的计算设计。设计空间必须非常大,才能探索相关的设计,但也受到了足够的限制,以使优化问题可以解决。开发相关的数学适应性功能对于准确评估软机器人设计的性能和效果至关重要。鉴于计算设计算法的重要数据要求和准确模拟的计算费用,我们旨在通过选择平衡计算时间和准确性的模型或使用学习技术来加速FEM模拟来加快模拟的速度。本论文探讨了软机器人的计算设计,重点是对数值结果的模拟到真实性。解决了两个参数软操作器的设计优化,一个具有嵌入式传感器,另一个具有自动接触功能。随着控制任务,环境和设计空间变得更加复杂,计算负担增加。这激发了从FEM模拟中学到的替代模型的发展,以表征软机器人的设计和控制。通过各种情况证明了该模型的适用性,特别是对气动操纵器的嵌入式控制和软操作器的计算设计。此外,这项工作的一个关键目标是开发工具以选择软机器人设计和控制。
在Marwan Hamze博士的监督下,该项目是在东京科学大学的吉田教授实验室的国际四个月实习的一部分。主要目的是为加强机器人手臂控制学习的应用的应用做出贡献。我的工作包括在模拟和真实环境中为机器人组开发和实施控制算法。强化学习使避免复杂的运动学模型成为可能,从而为机器人提供通过与环境直接互动来优化其行为的能力。我将精力集中在优化XARM6机器人手臂控制上,并从科学文献中适应方法。我在模拟中首先测试了这些算法,然后将它们应用于真实环境以评估其稳健性。我的目标是获得加强对人形机器人控制的技能,以控制川崎的Kaleido机器人,尺寸为1.80 m,重80 kg。这个项目使我能够增强机器人技术和人工智能方面的技术技能,同时促进该扩展领域应用的研究。
进一步补充说,secunderabad Kims Hospitals Dhanunjaya Rao Ginjupally博士,立体定向和功能性神经外科医院说:“这些毫米的分数可以对深脑刺激的有效性和安全性产生很大的差异。如果没有将电极植入正确的位置,则神经外科医生可能必须多次穿透大脑,这增加了除多个编程和铅重新定位外出血的风险。但是,如果将电极植入正确的位置,则效果是压倒性的,同时最大程度地减少了去医院的风险和重新审视。”
Historical Overview ............................................................4 The Advent of Modern Robotics .........................................6 Evolution of Automation .....................................................7 Emergence of CNC Technology ........................................10 Technical Progress of CNC (Computer Numerical Control) .........................................................................10 Integration and Advancements ...................................................................................................................................................................................................................................................................................................................................................................................................................................
摘要:我们表明,通过扩展主动推理框架,可以在目的论框架中制定目标导向的行动规划和生成。所提出的模型建立在变分递归神经网络模型上,具有三个基本特征。这些特征是:(1)可以为静态感官状态(例如要达到的目标图像)和动态过程(例如围绕物体移动)指定目标;(2)该模型不仅可以生成目标导向的行动计划,还可以通过感官观察来理解目标;(3)该模型根据从过去的感官观察推断出的当前状态的最佳估计,为给定目标生成未来的行动计划。通过在模拟移动代理以及执行对象操作的真实人形机器人上进行实验来评估所提出的模型。
感知在各种机器人应用中起着至关重要的作用。但是,现有的良好的数据集偏向自动驾驶场景,而未标记的SLAM数据集则很快过于拟合,并且通常缺乏环境和域变化。为了扩大这些领域的边界,我们介绍了一个名为MCD(Multi-campus数据集)的全面数据集,其中包含各种感应方式,高准确的地面真相以及在三个欧亚大学的欧亚大学校园内的挑战性环境。MCD包括CCS(经典的圆柱旋转)和NRE(非重复性环球)LIDAR,高质量的IMU(惯性测量单元),相机和UWB(URWB(Ultra-Wideband))传感器。更重要的是,在开创性的努力中,我们引入了29堂课的语义注释,超过59k稀疏的nre lidar扫描