摘要:我们提出了 RoboFlow,这是一个基于云的工作流管理系统,用于协调开发 AI 增强型机器人的流程。与大多数以流程为中心的传统机器人开发流程不同,RoboFlow 以数据为中心。这一显著特性使其特别适合开发以数据为核心的 AI 增强型机器人。更具体地说,RoboFlow 将整个机器人开发过程建模为 4 个构建模块(1. 数据处理、2. 算法开发、3. 回溯测试和 4. 应用程序适配),并与集中式数据引擎交互。所有这些构建模块都在统一的接口框架下进行容器化和编排。这样的架构设计大大提高了所有构建模块的可维护性和可重用性,并使我们能够以完全并行的方式开发它们。为了证明所开发系统的有效性,我们利用它来开发两个原型系统,分别名为“Egomobility”和“Egoplan”。 Egomobility 为各种移动机器人提供通用导航功能,而 Egoplan 则解决机器人手臂在高维连续状态和动作空间中的路径规划问题。我们的结果表明,RoboFlow 可以显著简化整个开发生命周期,并且相同的工作流程适用于众多智能机器人应用程序 2 。
摘要 - 本文旨在探索3D视觉技术在后勤过程自动化中的应用,并在工业环境中使用深度学习进行对象识别和操纵。这项工作开发了一个3D视觉系统,该系统采用对象和键盘检测模型,该模型训练有Roboflow和Yolov8等工具(您只看一次版本8)。该方法包括数据收集和注释,深度学习模型的开发以及对获得结果的分析。模型在块和关键点识别中表现出很高的精度和回忆,由于注释的可变性,关键点模型的精度略有降低。整合模型提出了计算挑战,但合并的方法被证明在精确检测中有效。限制包括对资源优化和注释过程改进的需求。此外,获得的准确性是由于对象检测系统经过大量数据训练以提供高精度的事实。根据平均精度(地图)和恢复的度量进行训练和评估该模型,获得98.3%的地图,精度为96.4%,召回95.6%。关键字:3D视觉;物流自动化; roboflow;对象检测;关键点; Yolov8。
首先,我要感谢我的主管的该项目,Technische Hochschule Ingolstadt(THI)的Torsten Schoun教授,在整个项目中给予了他的指导和灵感。Torsten通过有用的信息和宝贵的管道组成部分的有用信息和宝贵的技巧做出了贡献。其次,我要感谢Thi智能移动系统的计算机视觉和计算机愿景学院,以便有机会写出我关于我自己作为美国足球GFL球员充满热情的主题的论文。接下来,我要感谢Nflverse和Roboflow的贡献者提供用于此方法的机器学习数据集。最后,我非常感谢2023年Ingolstadt Dukes的球员参加我的调查。
1助理教授,234助理教授,印度卡纳塔克邦,卡纳塔克邦,贝达尔,贝拉加维,贝拉加维,卡纳塔克邦,印度卡纳塔克邦的班纳塔克邦的Guru Nanak Dev工程学院计算机科学与工程系,印度,印度摘要,通过有效的武器检测是现代安全系统中的重要武器探索。本研究使用Yolov8深学习模型介绍了AI驱动的武器检测系统。该系统在Roboflow武器检测数据集上进行了训练,以在实时视频提要或图像中准确识别和分类武器。通过利用先进的计算机视觉技术,该模型可以增强监视功能,减少响应时间并改善高风险环境中的安全措施。实验评估证明了高准确性和效率,这使该系统成为公共空间中自动化威胁检测的可靠解决方案。关键字:武器检测,人工智能(AI),深度学习(DL),Yolov8,监视系统,实时检测I.引言随着公共场所的越来越多的安全问题,实时武器检测已成为至关重要的必要性。传统的监视系统在很大程度上依赖手动监测,这容易受人为错误和效率低下。人工智能(AI)和深度学习(DL)纳入安全应用程序的整合已显着增强了自动化威胁检测,从而更快,更准确地识别了潜在风险。本研究重点是使用最新的对象检测算法Yolov8模型实施AI驱动的武器检测系统。通过利用Roboflow的深度学习技术和策划的数据集,该系统旨在实时从视频供稿或图像中实时识别武器。基于AI的武器检测AI驱动武器检测系统的重要性提供了几个关键优势:
摘要 - 花园环境中物体的检测和分类是应考虑的必要支持,这不仅是因为它促进了花朵的分类,还因为它减少了所需的时间,因为它不再需要专家进行。卷积神经网络的使用在所有领域都在上升,无论是在汽车行业,牲畜,航空等。这是由于它们的特征,它利用人工智能培训来实现对物体的精确检测和分类,但是所有这些方法的成本都很高,并且任何人都无法操纵。该资源的实施,与Yolov8算法并肩作用,代表了花型检测和分类领域的显着进步。关键字:分类,花卉农场,卷积神经网络,Yolo,Python,Roboflow,人工智能。
摘要 - 1)数据准备:具有良好质量注释照片的数据质量至关重要。包括各种汽车型号,透视和损坏类型(划痕,凹痕,零件等)。2)多样性:数据集应代表各种背景,气候和照明条件,以改善模型概括。注释的工具:可以使用labelimg,roboflow或cvat等应用程序来加快注释过程。类不平衡:地址类别不平衡(例如,更多的较小划痕,而损坏的组件更少),以防止预测中的偏见。3)Yolo版本7和8功能:Yolov7:非常快速准确。强调非常精确的实时检测,该检测有资格用于保险和现场检查等申请。Yolov8:更加用户友好,并提供了改进的推理和培训支持。改进的模型。
本研究重点利用先进的深度学习技术对 MRI 图像进行特征检测,利用全面的脑肿瘤分割 (BraTS) 2018 数据集,其中包含 3,588 张 MRI 图像。本研究突出介绍了 You Only Look Once 版本 8 (YOLOv8) 算法的应用,该算法因其在复杂图像分析中出色的实时处理和准确性而被选中。该方法涉及详细的数据收集和精确的注释过程,采用 RoboFlow 进行高效的数据标记。该模型的训练经过精心设计,以平衡最佳学习和防止过度拟合。值得注意的是,该模型实现了 97.9% 的平均精度 (mAP),在 MRI 图像中的特征检测中表现出很高的准确性和可靠性。本文强调了 YOLOv8 在医学成像中的功效,并为医疗诊断中不断发展的人工智能领域做出了贡献。
机器学习模型对于使用图像检测,分类和分割对象很有价值。随着这项技术的发展,它有助于自动化劳动密集型的农业任务。Yolo模型有效地检测小物体和大型物体,实现自动识别和计数,这是农业和研究中的重要任务。这个初学者研讨会将指导您从开放源数据库下载图像,并在使用Roboflow或LabelBox等工具标记图像时提供动手体验。您还将学习训练和调整对象检测模型,以解决精确农业中的实际挑战,例如使用软件检测昆虫,杂草和疾病。此外,我们将检查当前用例,包括对昆虫和其他相关农业问题的检测和鉴定。参与者有望带上笔记本电脑。目的是让参与者在离开研讨会时拥有一些可用的代码。•会议前研讨会2(10:00 AM - 12:00 PM)在磨坊宴会厅
摘要近年来人们对体育运动的兴趣和热情显着增加。这使人们越来越重视各种运动的高质量视频录制,以捕获最小的细节。录制和分析在诸如五人制的体育运动中变得极为重要,五人五个复杂而快速的事件。球检测和跟踪以及玩家分析,已经成为许多分析师和研究人员感兴趣的领域。教练依靠视频分析来评估团队的表现并做出明智的决定以取得更好的成绩。此外,教练和体育侦察员可以通过审查过去的比赛来使用此工具为才华横溢的玩家侦察。球检测对于帮助裁判在比赛的关键时刻做出正确的决定至关重要。但是,由于球的不断运动,其形状和外观会随着时间的流逝而变化,并且通常会被玩家所阻挡,因此在整个游戏中跟踪其位置的挑战。本文提出了一种基于深度学习的Yolov8模型,用于在广播五人制视频中检测球和玩家。关键字yolov8,roboflow,球检测,球员检测,五人
抽象目标识别是军事事务的优先事项。有必要识别移动的对象,不同的地形和景观创造识别障碍,这使此任务变得复杂。作战动作可以在一天中的不同时间进行,因此必须考虑照明角度和一般照明。有必要通过分割视频帧并识别和对其进行分类来检测视频中的对象。在工作中,作者提出了通过人工智能使用在拟议的信息技术框架内开发目标识别模块作为消防系统的组成部分。Yolov8模式识别模型家族用于开发目标识别模块。数据是从开源来源收集的,特别是从YouTube平台上的开源源中发布的视频录像。数据预处理的主要任务是在视频或实时-APC,BMP和TAMP上对三类对象进行分类。数据集是基于标记工具以及随后的增强工具的Roboflow平台形成的。数据集由1193个唯一图像组成 - 每个类别均匀。使用Google Colab资源进行培训。采用100个时代来训练模型。根据MAP50(平均平均精度为0.85),MAP50-95(0.6),精度(0.89)和召回(0.75)指标进行分析。这将是下一步。也有必要扩大军事设备对象的分类。存在巨大的损失,因为在研究中未考虑背景 - 基于未经技术的背景的验证数据(图像)训练模块。