摘要。在自然环境中具有综合性运作的情境意识到的人工药物面临着几个挑战:空间意识,对象效果检测,动态变化和不可预测性。一个关键的挑战是代理商识别和监视与其目标有关的环境要素的能力。我们的研究介绍了一种用于反应性机器人技术的神经符号模块化体系结构。我们的系统结合了在环境和图像处理技术(如光流)上执行对象识别的神经组件,以及符号表示和推理。通过将图像示意性知识整合在本体论结构中,推理系统基于体现认知范式的基础。该本体可用于创建有关感知系统的查询,决定符合的问题,并推断从感知数据中得出的实体功能。推理和图像处理的组合允许代理对正常操作的看法,并发现针对特定相互作用中涉及的对象的一部分的新概念。发现的概念允许机器人自主获取培训数据并只是其符号的感知来识别零件,并通过将搜索重点放在这些相关对象的零件上,从而为更复杂的任务进行计划。我们在模拟世界中演示了我们的方法,在模拟世界中,代理商学会了识别涉及支持关系的对象的一部分。虽然代理商最初没有概念,但通过观察从钩子上悬挂的支持对象的示例,但它学会了认识到建立支持所涉及的部分并能够计划支持关系的建立/破坏。这可以通过系统的方式通过观察来扩展其知识的能力,并说明了将深层推理与动态设置中的反应性机器人技术相结合的潜力。
无缝的人类机器人相互作用(HRI)需要机器人对人类的多模式输入的熟练处理,包括语音,凝视和面部表情,以准确评估人类的影响并相应地提供帮助。同时,机器人必须通过多模态输出渠道清楚地将自己的意图清楚地传达给人类,包括语音,手势和凝视。传统上,在机器人系统中实现此功能通常需要复杂的设计。在意图估计的领域中,以前的研究通常合并意图识别模块,以基于多模式输入[3,17]对人类意图进行分类。一些系统还具有用于检测人类情感状态的专用模块,对于建立社会细微差别的互动至关重要[10,16,18]。但是,这些方法的缺点在于它们耗时且昂贵的培训过程。在输出方面,许多先前的系统集成了情绪状态[8,11]模块,以控制人形输出提示,例如音调,凝视或面部表情,增强了向人类反馈的透明度和生动性。关于运动产生,提出了多种方法,包括预先建立的运动集的混合和图表[19,25],以及使用运动捕获数据[5,9,15]。值得注意的是,这涉及与特定状态相关的每种输出模式的动作手动设计。通过利用文本理解,推理和计划的能力,在短时间内提出了许多机器人应用[7,12,14,20,21,28]。例如,Zhang等人。大型语言模型(LLM)的最新进展,诸如聊天机器人,数据过程和代码生成之类的域中的表现令人印象深刻的功能正在揭示其在机器人技术领域的潜在应用。其中一个通常的例子是“ Saycan”机器人[1],它能够解释人的自然语言命令,分析环境并生成具体的可执行操作序列,以通过使用LLMS来满足人类的要求。但是,机器人和人之间的互动提示仅限于语音命令,即使没有语音输出。最近,一些研究人员还试图将这种技术应用于HRI领域。利用LLM来估计人类有多少信任机器人[30]; Yoshida等人,使用LLMS生成低级控制命令来推动人形机器人运动以进行社会表达[29],而不是用于实践援助。Baermann等人,部署了LLM不仅遵循人类的言语命令,而且还通过人类的自然语言反馈来纠正其错误[2]。然而,通信主要依赖语音相互作用,而较少关注多模式感应和表达能力。ye等。[27]驱动了一个LLM驱动的机器人系统,该系统能够与人类在VR环境中的组装任务中合作。,但是该系统仅限于处理人类语言输入并控制虚拟空间中的单臂。通常,与快速
●学生对机器人技术的基本技术,系统级别和社会/经济挑战表示感谢。●学生通过探索尖锐的学术研究和现场剥夺系统,在不同的次级区域(例如,感知,计划,控制,受生物启发的设计和多代理互动)中对当前的艺术状态(例如,感知,计划,控制,受到生物启发的设计和多代理互动)进行了了解。●学生通过将该领域的问题,挑战和解决方案与工程,自然科学,社会科学,人文和艺术的其他学科联系起来,探索机器人技术的多学科和跨学科性质。●学生考虑具有社会意义的问题(例如隐私,公平,经济挑战,对环境的挑战和政策),并在这些问题上进行集中课程工作的机会。●学生通过在包括设计和机器人硬件的动手体验以及高级独立工作项目或论文的课程中,通过基于项目的作业将这些课程付诸实践。
软机器人利用合规的材料以灵活的方式与复杂和不确定的环境相互作用,从而可以操纵脆弱的物体并与生物的安全相互作用。它们的适应性推动了医学和制造等领域的创新。设计软机器人即使对于经验丰富的设计师,由于其非线性材料,多物理耦合,多个身体与环境之间的复杂相互作用及其许多自由度,即使对于经验丰富的设计师来说也很具有挑战性。这解释了为什么软机器人技术中的第一批设计受到自然的启发,模仿了诸如蠕虫或章鱼之类的软动物。软体能够符合硬对象并重新配置DI FF任务,然后将控制的重要部分委派给身体。与刚性机器人不同,体现的智能仍然是软机器人技术中的新兴话题。但是,很明显,可以很好地适应其环境的代理商可以快速学习智能行为。本文摆脱了传统的训练控制和敏捷性的关注,旨在通过将人工智能与软机器人设计联系起来来应对控制挑战。软机器人技术领域在建模,控制和设计方面提出了许多挑战。Inria Lille的除霜团队已经开发了几种有限元方法(FEM)的工具来应对这些挑战,从而可以准确地模拟软机器人。这些工具已用于低级控制,并在制造前评估了软机器人设计。此探索需要解决一些挑战。在这项工作中,应用了各种基于FEM的仿真和数值优化工具来探索软机器人的计算设计。设计空间必须非常大,才能探索相关的设计,但也受到了足够的限制,以使优化问题可以解决。开发相关的数学适应性功能对于准确评估软机器人设计的性能和效果至关重要。鉴于计算设计算法的重要数据要求和准确模拟的计算费用,我们旨在通过选择平衡计算时间和准确性的模型或使用学习技术来加速FEM模拟来加快模拟的速度。本论文探讨了软机器人的计算设计,重点是对数值结果的模拟到真实性。解决了两个参数软操作器的设计优化,一个具有嵌入式传感器,另一个具有自动接触功能。随着控制任务,环境和设计空间变得更加复杂,计算负担增加。这激发了从FEM模拟中学到的替代模型的发展,以表征软机器人的设计和控制。通过各种情况证明了该模型的适用性,特别是对气动操纵器的嵌入式控制和软操作器的计算设计。此外,这项工作的一个关键目标是开发工具以选择软机器人设计和控制。
摘要。已经创建了多个软件框架,以帮助开发人员建模机器人应用程序。这些框架使用适合控制硬件组件(例如传感器和执行器)的低级编程结构,但在抽象复杂性方面受到限制。相反,代理编程语言支持使用更高水平的抽象来实现代理,但是这些语言主要仅限于软件代理的开发。在本文中,我们概述了将代理编程语言与机器人开发框架集成的体系结构和编程构造,以便使用高级抽象来编程自主机器人。由此产生的编程环境旨在使用自主认知剂的抽象来促进机器人对综合行为的建模。
从网络数据中学习可概括的视觉表示已为机器人技术带来了令人鼓舞的结果。然而,预循环方法着眼于预训练2D表示,是应对闭塞的优势,并在复杂的3D场景中准确地将对象定位。同时,3D代表学习仅限于单对象。为了解决这些局限性,我们引入了一个名为Sugar的机器人技术的新型3D预训练框架,该框架通过3D点云捕获对象的语义,几何和负担性能。我们强调了3D表示学习中混乱场景的重要性,并自动构建一个受益于模拟中无需成本监督的多对象数据集。Sugar采用一种多功能变压器的模型来共同解决五个预训练任务,即用于语义学习的跨模式知识蒸馏,以掩盖点建模,以取消几何结构,掌握姿势合成以进行对象负担,3D实例分割和引用表达地面以分析杂乱无章的场景。我们对三个与机器人相关的任务进行了学习的代表,即零射击3D对象识别,引用凸起的接地和语言驱动的机器人操作。实验结果表明,糖的3D表示优于最先进的2D和3D表示。
摘要——气动技术在工业中的应用受到广泛青睐,因为它具有广泛的可用性和无污染的流体,因此有可能取代工业中的其他系统。在工业机器人领域,很少设计带有气动伺服电机的机械臂,因为对此的研究很少。该技术是一种带反馈的闭环重复控制系统,使其在工业过程中的实施成为可能。由于气动工业机器人很少,本研究旨在设计一个原型,通过运动学的解析对位置进行精确控制并降低气动系统的非线性随机性,这将为所需应用的气动伺服电机的机械调整提供必要的信息以及对传输模拟的解释。本研究提供了一个完全气动和功能齐全的机器人原型的制造模型,为未来应用于工业机器人的气动控制研究开辟了领域。
在建筑业中的绘画是一种危险活动,为工人带来了许多建筑风险,例如从高处掉下来,笨拙的位置肌肉骨骼疾病以及暴露于有毒物质,尤其是在狭窄的空间中。大多数建筑项目都包括绘画活动和绘画活动的重复性质,导致了几个绘画机器人的提议,目前很少有商业上可用。这些机器人在目前的状态下有一定的局限性,影响了机器人的最终生产力及其在建筑工作地点的实施。本文解决的问题是缺乏对自主绘画机器人(APR)必要要素的研究,以有效,安全地执行施工绘画活动。这表明需要评估可用绘画机器人的当前局限性,以生成可以作为提高APR效率的方法进一步研究的基础的信息。因此,这项研究的目的是确定有效的APR的特性,并将其与市售APR的特性进行比较。对Scopus数据库和Google Scholar库的相关文献进行了全面研究,介绍了定义APR性能的主要参数。该研究强调了评估APR性能以及可用机器人的当前局限性的主要特性。这项研究的结果有望为对提高APR生产率提高的研究人员提供进一步的研究领域。关键词:绘画机器人,自动移动机器人,建筑自动化,建筑安全
I。多亏了不断增长的支持,阿莫尔(Amore)从入门级团队发展到了一支竞争激烈的球队,在比赛期间始终进入决赛,在Roboboat 2024和Virtual Robotx 2023中排名前五。Amore的工作涵盖了四个工程高级设计项目,研究课程,与其他机器人机构的国际合作,以及在北美大湖地区的机器人技术和生物学上发表的学术研究[1],[2]。
在快速技术进化的背景下,药房正面临着越来越多的挑战,这是由于19号大流行而加剧的。为了应对这些挑战,我们的项目建议使用机器人和人工智能系统对药房进行现代化化。这些技术允许自动化各种任务,例如销售,监视和数据输入,从而减少了人类的努力并最大程度地减少错误。该项目依赖于高级技术,例如光学特征识别(OCR),用于阅读处方,数据库搜索以定位药物以及药物收集和付款的自动化。添加的值包括使用屏幕作为广告空间,通过连接的平台管理投诉以及常规的库存监控。此外,将集成药房助理机器人,以帮助日常任务管理和客户互动。总而言之,该项目从根本上通过结合技术创新和人工智能来改变药房运营,从而提高效率和服务质量。关键字:智能药房,人工智能,机器人技术,药房自动化,OCR