在纺织品排序中,服装的分离,粗糙分类和扁平化至关重要。该博士学位论文旨在开发工业规模的扁平化过程。使用新颖的仪器工具,精确记录了人类对此过程的演示。可以使用集成的力/扭矩传感器记录触觉方面,并且可以使用集成的摄像头记录纺织品上的实际抓地点。因此,一个非常通用的数据集由人类专家生成,使得为各种服装,材料,印刷图案和尺寸的动作,相互作用力和抓地点创建和学习成为可能。
改善现实世界中通用机器人操纵的概括能力长期以来一直是一个重大挑战。现有的方法通常依赖于收集大规模机器人数据,这些机器人数据是昂贵且耗时的。但是,由于数据的多样性不足,他们通常会限制其在开放域中的能力,并具有新的对象和不同的环境。在本文中,我们提出了一种新颖的范式,该范式有效地利用了由Internet规模的基础模型生成的语言分割掩码,以调节机器人操纵任务。通过将蒙版模态整合到源自视觉基础模型的语义,几何和时间相关先验中,并将其方法呈现为端到端的策略模型,我们的方法可以有效地感知的对象姿势并启用样本有效的概括性学习,包括新的对象,包括新的对象,包括新的对象,semantic intancics,Semantic类别,语义类别,和统一的背景。我们首先引入了一系列基础模型,以跨多个任务进行基础语言需求。其次,我们基于模仿学习开发了一个两流2D策略模型,该模型可以处理原始图像和对象掩码,以以局部 - 全球知觉方式预测机器人动作。在Franka Emika机器人和低成本双臂机器人上进行的广泛的现实世界实验证明了我们提出的范式和政策的有效性。可以在link1或link2中找到演示,我们的代码将在https://github.com/mcg-nju/tpm上发布。
†同等贡献 *相应的作者隶属关系:1个生物医学工程的人工智能部门,弗里德里希 - 亚历山大 - 大学 - 埃尔兰根 - 纽伦伯格;德国埃尔兰根。2信息工程和数学系,UniversitàDegliStudi di Siena;意大利锡耶纳。 3 Querschnittzentrum Rummelsberg,Krankenhaus Rummelsberg GmbH;德国Schwarzenbruck。 *通讯作者。 电子邮件:Alessandro.del.vecchio@fau.de,dprattichizzo@unisi.it摘要:恢复手功能是四项运动员的最高优先事项之一。 然而,对于运动完全脊髓损伤的个体,当前恢复基本手动运动仍然有限。 在这项研究中,我们提出了一种非侵入性神经学界面,该界面直接转化了较低的运动神经元活动,该活动曾经编码手的开口和闭合到超级机器人机器人的第六指中。 我们重新启用了三个患有慢性(> 8年)的人完全宫颈脊髓损伤,以抓住对日常生活重要的物体,具有控制手指屈曲和扩展的相同神经输入。 经过几分钟的培训,参与者直观地调节了电动机单元的排放活动,从而控制了手势和关闭。 然后使用这些电动机单元按比例地控制机器人第六指。 所有参与者成功执行了各种掌握任务,这些任务需要数字上的相当大的力量,例如,通过拧开帽子打开瓶子。 这可以显着改善瘫痪者的生活质量。2信息工程和数学系,UniversitàDegliStudi di Siena;意大利锡耶纳。3 Querschnittzentrum Rummelsberg,Krankenhaus Rummelsberg GmbH;德国Schwarzenbruck。*通讯作者。电子邮件:Alessandro.del.vecchio@fau.de,dprattichizzo@unisi.it摘要:恢复手功能是四项运动员的最高优先事项之一。然而,对于运动完全脊髓损伤的个体,当前恢复基本手动运动仍然有限。在这项研究中,我们提出了一种非侵入性神经学界面,该界面直接转化了较低的运动神经元活动,该活动曾经编码手的开口和闭合到超级机器人机器人的第六指中。我们重新启用了三个患有慢性(> 8年)的人完全宫颈脊髓损伤,以抓住对日常生活重要的物体,具有控制手指屈曲和扩展的相同神经输入。经过几分钟的培训,参与者直观地调节了电动机单元的排放活动,从而控制了手势和关闭。然后使用这些电动机单元按比例地控制机器人第六指。所有参与者成功执行了各种掌握任务,这些任务需要数字上的相当大的力量,例如,通过拧开帽子打开瓶子。这可以显着改善瘫痪者的生活质量。我们的发现提出了协助手部功能的变革性步骤,提供了直观且非侵入性的神经合法界面,而无需学习新的运动技能,因为参与者使用与受伤前相同的运动命令。主文本:简介恢复手功能的关键重点是脊柱α运动神经元的活性,这是神经肌肉系统的最后电动途径。众所周知,即使被归类为完整的脊髓损伤(SCI)的个体,也可能保留1-4损伤高于损伤水平上方和之下的一些较不幸的神经连接。在先前涉及具有运动SCI的个体(八个具有C5-C6损伤水平的参与者)的研究中,我们证明了使用高密度表面肌电图(HDSEMG)通过非侵入性神经界面进行任务调节的运动单位,从而实现了手指运动的解码2。所有参与者在特定的电动机单位和
摘要:近年来,协作机器人已成为行业4.0的主要动力之一。与工业机器人相比,自动化的导向车辆(AGV)更具生产力,灵活,多功能和更安全。它们在智能工厂被用于运输货物。今天,许多工业机器人的生产商和开发商都进入了AGV领域。但是,他们在设计AGV系统(例如设计过程的复杂性和不连续性)以及定义分散系统决策的困难方面面临着一些挑战。在本文中,我们提出了一种基于群体机器人技术的新的集成设计方法,以应对功能,物理和软件集成的挑战。此方法包括两个阶段:一个自上而下的阶段,从需求规范到使用系统建模语言(SYSML)的功能和结构建模;在机器人操作系统(ROS)中进行模型集成和实现的自下而上阶段。选择了自动导向车辆(AGV)系统的案例研究以验证我们的设计方法,并说明了其对AGV的有效设计的贡献。这种提出的方法的新颖性是SYSML和ROS的结合,以解决AGV系统的不同设计级别之间的可追溯性管理,以实现功能,物理和软件集成。
目的:本单元的目的是为学习者提供对人工智能(AI)原则,技术及其与机器人基本面的应用。该单元将发展学习者对AI技术,解决问题方法,机器人系统,运动学,控制方案和基于传感器的应用的了解。
在过去的30年中,妇科医生扩大了手术范围,包括少量干扰手术。机器人辅助手术的优点包括使用联合遗嘱工具,控制震颤的能力,并在三维(3D)立体视图中查看和操纵组织。它已于2005年获得美国食品药品监督管理局(FDA)的批准,使用DA Vinci手术系统进行了有限的妇科操作。目前,该系统是市场上唯一经FDA批准的机器人阶段。与传统腹腔镜检查相比,该平台有许多优势,包括术后不适,改善外科医生人体工程学,对仪器曲线的更快分析,消除支点效应以及荧光技术的更有序整合以进行淋巴血管估计。自1980年代初以来,圈逐渐发展[1]。尽管采用了最初的采用速度,但LAP花了四十年的时间才能成为标准方法。毫无疑问,膝盖比开放手术具有许多优势。与传统的开放手术相比,使用小切口和专门的手术器械可以最大程度地减少对周围组织的损害。这会导致疼痛减轻,减少失血,术后并发症的较少,住院时间较短,恢复速度更快,发病率较低[2]。
摘要:本文研究了人工神经网络(ANN)作为可行的数字双胞胎或工程系统中典型的耳语库模式(WGM)光学传感器的替代方案,尤其是在机器人技术等动态环境中。由于其脆弱性和有限的耐力,因此在这种情况下,基于微光学谐振器的WGM传感器是不合适的。为了解决这些问题,本文建议了专门为系统设计的ANN,并利用了WGM传感器的高质量因子(Q -Factor)。通过将适用性和耐力扩展到动态环境并减少脆弱性问题,ANN试图进行高分辨率的测量。为了最大程度地减少后处理要求并保持系统鲁棒性,研究目标是使ANN充当WGM传感器输出的代表性预测指标。在本文中使用Gucnoid 1.0类人形机器人作为一个例子,以说明WGM光学传感器如何改善各种应用的类人形机器人性能。实验的结果表明,ANN输出和实际WGM偏移的灵敏度,精度和分辨率是等效的。因此,删除了机器人技术行业中广泛使用高级感知的当前障碍,并验证了ANN作为虚拟替代物或数字双胞胎在机器人系统中的真实WGM传感器的潜力。因此,本文不仅对符合动态环境的机器人技术中使用的传感技术非常有益,还可以对工业自动化和人机界面进行有益。