•满足所有学习者的需求,包括需要额外支持或有特殊需求的学习者的需求。SHS,SHT和STEM课程包括通过技术和其他措施将教学和学习材料调整为可访问的格式,以满足残疾学习者的需求,包括残疾学习者。•结合策略和措施,例如差异化和适应性教学法,以确保为所有学习者提供公平的资源和机会。•挑战传统的性别,文化或社会刻板印象,并鼓励所有学习者发挥真正的潜力。•为学校中有才华和才华横溢的学习者提供需求。
摘要关于实验方法的辩论,其作用,限制以及其可能的应用程序最近在自主机器人技术中引起了人们的关注。,如果从一方面,诸如可重复性和重复性的经典实验原理,它是发展该研究领域良好实验实践的灵感,另一方面,一些最新的分析证明了严格的实验方法尚未完全是该社区研究习惯的全部。在本文中,为了给出一部分自主机器人技术中当前的体验实践的理由,这些实践在传统的受控实验概念下无法令人满意地容纳,我们将不再进行探索实验。在这种情况下进行的探索性实验应作为在没有适当理论或理论背景的情况下进行的一种调查形式,在这种情况下,从一开始就无法完全管理对实验因素的控制。我们表明,这一概念源于(并得到)对大量论文样本中报道的实验活动的分析,这些论文已在两个最大,最重要的机器人研究会议上获得了奖励。
摘要。在自然环境中具有综合性运作的情境意识到的人工药物面临着几个挑战:空间意识,对象效果检测,动态变化和不可预测性。一个关键的挑战是代理商识别和监视与其目标有关的环境要素的能力。我们的研究介绍了一种用于反应性机器人技术的神经符号模块化体系结构。我们的系统结合了在环境和图像处理技术(如光流)上执行对象识别的神经组件,以及符号表示和推理。通过将图像示意性知识整合在本体论结构中,推理系统基于体现认知范式的基础。该本体可用于创建有关感知系统的查询,决定符合的问题,并推断从感知数据中得出的实体功能。推理和图像处理的组合允许代理对正常操作的看法,并发现针对特定相互作用中涉及的对象的一部分的新概念。发现的概念允许机器人自主获取培训数据并只是其符号的感知来识别零件,并通过将搜索重点放在这些相关对象的零件上,从而为更复杂的任务进行计划。我们在模拟世界中演示了我们的方法,在模拟世界中,代理商学会了识别涉及支持关系的对象的一部分。虽然代理商最初没有概念,但通过观察从钩子上悬挂的支持对象的示例,但它学会了认识到建立支持所涉及的部分并能够计划支持关系的建立/破坏。这可以通过系统的方式通过观察来扩展其知识的能力,并说明了将深层推理与动态设置中的反应性机器人技术相结合的潜力。
SeaPerch 是一个创新的水下机器人项目,它为教师和学生提供在校内或校外环境中建造水下遥控机器人 (ROV) 所需的资源。学生使用由低成本、易于获取的零件组成的套件建造 ROV,并遵循教授海洋工程主题的基本工程和科学概念的课程。在整个项目过程中,学生将学习工程概念、解决问题、团队合作和技术应用。团队在每年变化的任务以及障碍赛、演示、技术设计报告等中相互竞争。
本丛书涵盖了广义上运用知识和智能的系统和范例。其范围是具有嵌入式知识和智能的系统,这些系统可应用于解决工业、环境和社会中的世界问题。它还侧重于有效实现这一目标的知识转移方法和创新战略。智能系统工具和广泛应用的结合需要科学、技术、商业和人文学科的协同作用。本丛书将包括会议论文集、编辑合集、专著、手册、参考书和其他相关类型的书籍,涉及智能系统和技术可以提供创新解决方案的科学和技术领域。
A.监视和记录学生的进度B.提供并维持有序的课堂环境C.与协调员,同伴,老师和支持人员进行独立和合作的工作D.可在夏季机器人的开始前一周参加一周的员工会议E.可以在整个两周内工作的能力。性取向或跨性别的认同,残疾,年龄,宗教,身高,体重,婚姻或家庭地位,军事地位,祖先,遗传信息或任何其他法律保护类别,包括就业机会,包括就业机会。犯罪记录按照州法律和董事会政策进行检查,在被指纹并通过犯罪记录审查之前,任何人都不得雇用任何人与儿童联系。本职位描述中包含的信息是为了遵守《美国残疾人法》(A.D.A.)并不是该职位履行的职责的详尽清单。目前担任此职位的个人履行了其他职责,可以分配其他职责。Application Deadline: March 21, 2025 Employment Dates: Meeting: July 1, 2025, Summer School dates: July 7, 2025 - July 31, 2025 Salary: $2,500.00 for the four weeks Apply To: To be considered as a candidate, you must submit by the deadline a letter of interest stating rationale for applying and qualifications for the position to: Sherri Simmons, Human Resources ssimmons@gulllakecs.org ph:269/548-3415
本课程为机器人探索以及AI驱动的映射和采样技术提供了全面的介绍,该技术量身定制,用于太空探索和地球观察。学生将在计算机视觉,同时本地化和映射(SLAM),多机器人协调以及使用高级AI工具在极端环境中运营等关键领域获得专业知识。课程强调现实世界的实施,将讲座与动手项目结合使用移动性自主系统,包括自主地面,空中和水生机器人作为数字双胞胎可用的以及在梦境实验室中的物理。该课程最终达到了一个基于小组的最终项目,学生在该项目中设计并展示了端到端的机器人系统,用于未来的空间探索,行星科学和地球观察。
●确定机器人的各个部分。●确定机器人的目的。●讨论不同类型的机器人控制系统。●定义术语“自主”和“远程处理”机器人。●在设计过程中考虑机器人的目标。●确定并考虑设计机器人(例如功能成本,安全性和道德)所涉及的不同因素。●使用CAD软件设计和模拟机器人机制。●安全操作机器人。●确定用于构建机器人的物理零件。●安装使机器人起作用所需的物理和电气组件。●组装机器人。●故障排除和维修机器人。●编写一个简单的程序供机器人执行任务。●编程机器人使用传感器的信息来控制其物理输出。●调试和完善机器人程序。●确定无人机和其他非驾驶飞机的用途。●解释AI和ML在机器人技术中的一些关键应用。●识别AI在机器人技术中的用途。
●模块I差分计算:审查极限,不确定形式和L'Hospital的规则。连续性和不同性。平均值定理和应用,Taylor的定理,Maxima和Minima。●模块II真实序列和序列:序列和串联,LIMSUP,LIMINF,序列的收敛以及一系列实数,绝对和条件收敛。●模块III积分计算:Riemann积分,积分计算的基本定理,确定积分的应用,不正确的积分,beta和γ函数。●模块IV高级演算:几个变量的功能,极限和连续性,部分衍生物和不同性,链规则,均匀函数以及Euler定理。Taylor的定理,Maxima和Minima以及Lagrange乘数的方法。●积分计算的模块V应用:双重和三个集成,Jacobian和变量公式的更改。曲线和表面的参数化。在集成符号下具有恒定和可变限制和应用的差异。