SeaPerch 是一个创新的水下机器人项目,它为教师和学生提供在校内或校外环境中建造水下遥控机器人 (ROV) 所需的资源。学生使用由低成本、易于获取的零件组成的套件建造 ROV,并遵循教授海洋工程主题的基本工程和科学概念的课程。在整个项目过程中,学生将学习工程概念、解决问题、团队合作和技术应用。团队在每年变化的任务以及障碍赛、演示、技术设计报告等中相互竞争。
本课程为机器人探索以及AI驱动的映射和采样技术提供了全面的介绍,该技术量身定制,用于太空探索和地球观察。学生将在计算机视觉,同时本地化和映射(SLAM),多机器人协调以及使用高级AI工具在极端环境中运营等关键领域获得专业知识。课程强调现实世界的实施,将讲座与动手项目结合使用移动性自主系统,包括自主地面,空中和水生机器人作为数字双胞胎可用的以及在梦境实验室中的物理。该课程最终达到了一个基于小组的最终项目,学生在该项目中设计并展示了端到端的机器人系统,用于未来的空间探索,行星科学和地球观察。
从网络数据中学习可概括的视觉表示已为机器人技术带来了令人鼓舞的结果。然而,预循环方法着眼于预训练2D表示,是应对闭塞的优势,并在复杂的3D场景中准确地将对象定位。同时,3D代表学习仅限于单对象。为了解决这些局限性,我们引入了一个名为Sugar的机器人技术的新型3D预训练框架,该框架通过3D点云捕获对象的语义,几何和负担性能。我们强调了3D表示学习中混乱场景的重要性,并自动构建一个受益于模拟中无需成本监督的多对象数据集。Sugar采用一种多功能变压器的模型来共同解决五个预训练任务,即用于语义学习的跨模式知识蒸馏,以掩盖点建模,以取消几何结构,掌握姿势合成以进行对象负担,3D实例分割和引用表达地面以分析杂乱无章的场景。我们对三个与机器人相关的任务进行了学习的代表,即零射击3D对象识别,引用凸起的接地和语言驱动的机器人操作。实验结果表明,糖的3D表示优于最先进的2D和3D表示。
社会大趋势也表明,需要增加机器人技术的利用率。有必要将制造业从汽车转移到半导体。目前(后疫情时代)劳动力短缺。根据美联储的数据,每十个空缺行业职位中只有七名工人可用 1 。如果没有提高生产率的“工具”,经济增长将面临挑战。人口每天老龄化 8 小时,随着时间的推移,劳动力减少,65 岁以上人口数量显著增加,这将对医疗保健系统和那些希望长期留在家中以继续享受高质量生活的人构成挑战。在技术快速变化的世界中,还需要提供持续劳动力培训的机制,以保持和发展经济增长的良好条件。
国会法案规定成立肯尼亚机器人和人工智能协会;规定其职能和权力;促进肯尼亚共和国境内机器人和人工智能技术负责任和合乎道德的发展和应用;并用于相关目的。
软机器人利用合规的材料以灵活的方式与复杂和不确定的环境相互作用,从而可以操纵脆弱的物体并与生物的安全相互作用。它们的适应性推动了医学和制造等领域的创新。设计软机器人即使对于经验丰富的设计师,由于其非线性材料,多物理耦合,多个身体与环境之间的复杂相互作用及其许多自由度,即使对于经验丰富的设计师来说也很具有挑战性。这解释了为什么软机器人技术中的第一批设计受到自然的启发,模仿了诸如蠕虫或章鱼之类的软动物。软体能够符合硬对象并重新配置DI FF任务,然后将控制的重要部分委派给身体。与刚性机器人不同,体现的智能仍然是软机器人技术中的新兴话题。但是,很明显,可以很好地适应其环境的代理商可以快速学习智能行为。本文摆脱了传统的训练控制和敏捷性的关注,旨在通过将人工智能与软机器人设计联系起来来应对控制挑战。软机器人技术领域在建模,控制和设计方面提出了许多挑战。Inria Lille的除霜团队已经开发了几种有限元方法(FEM)的工具来应对这些挑战,从而可以准确地模拟软机器人。这些工具已用于低级控制,并在制造前评估了软机器人设计。此探索需要解决一些挑战。在这项工作中,应用了各种基于FEM的仿真和数值优化工具来探索软机器人的计算设计。设计空间必须非常大,才能探索相关的设计,但也受到了足够的限制,以使优化问题可以解决。开发相关的数学适应性功能对于准确评估软机器人设计的性能和效果至关重要。鉴于计算设计算法的重要数据要求和准确模拟的计算费用,我们旨在通过选择平衡计算时间和准确性的模型或使用学习技术来加速FEM模拟来加快模拟的速度。本论文探讨了软机器人的计算设计,重点是对数值结果的模拟到真实性。解决了两个参数软操作器的设计优化,一个具有嵌入式传感器,另一个具有自动接触功能。随着控制任务,环境和设计空间变得更加复杂,计算负担增加。这激发了从FEM模拟中学到的替代模型的发展,以表征软机器人的设计和控制。通过各种情况证明了该模型的适用性,特别是对气动操纵器的嵌入式控制和软操作器的计算设计。此外,这项工作的一个关键目标是开发工具以选择软机器人设计和控制。
课程描述和目标:本课程提供了机器人技术中的设计和编程感知系统的介绍。该课程涵盖了使用视觉和3D深度传感器的导航领域的主题,本地化和地图制作,视觉导航和识别的基本图像处理,视觉和基于深度的掌握和操纵以及基于深度学习的感知处理技术中的前沿主题。您将开发算法,并学习如何使用当前的最新视觉和软件工具,例如OpenCV,MoveIt和Point Cloud库。该软件组件可以在机器人操作系统(ROS)下开发。该课程将在对象识别,姿势检测,视觉导航以及视觉和推理的应用空间中使用感知大约进行四到五个项目。该软件将首先在模拟中开发,然后在平台上对其进行测试,在该平台上,学生将以三个或四个组为组。该课程是一个面对面的动手学习 +发展课程,我们希望学生参加课内会议。
●学生对机器人技术的基本技术,系统级别和社会/经济挑战表示感谢。●学生通过探索尖锐的学术研究和现场剥夺系统,在不同的次级区域(例如,感知,计划,控制,受生物启发的设计和多代理互动)中对当前的艺术状态(例如,感知,计划,控制,受到生物启发的设计和多代理互动)进行了了解。●学生通过将该领域的问题,挑战和解决方案与工程,自然科学,社会科学,人文和艺术的其他学科联系起来,探索机器人技术的多学科和跨学科性质。●学生考虑具有社会意义的问题(例如隐私,公平,经济挑战,对环境的挑战和政策),并在这些问题上进行集中课程工作的机会。●学生通过在包括设计和机器人硬件的动手体验以及高级独立工作项目或论文的课程中,通过基于项目的作业将这些课程付诸实践。
Scitech摘要简介整个网络 - 10月26日 - NOV。 1次适用于移动机器人中国专利新闻的四轮独立悬架系统授予的中国专利赠款|星期五,2024年11月1日