心肌梗塞(MI)是死亡和残疾的主要原因之一。最近开发的心脏贴片提供了机械支持和其他导电路径,以促进MI区域中的电信号传播,以同步心脏激发和收缩。基于有吸引力特征的导电聚合物的心脏斑块;但是,弹性和高阻抗界面的适中水平限制了它们的机械性能和电性能。这些结构也作为永久性植入物运行,即使在其效用仅限于MI受损组织的愈合期的情况下。此处介绍的工作引入了高度导电的心脏贴片,该贴片将可吸收的金属和聚合物组合在薄薄的蛇纹石几何形状中,以产生弹性机械性能。有限元分析指导这些系统中布局的优化选择。人类诱导的多能干细胞衍生的心肌细胞的常规和同步收缩在心脏斑块上,并在体内研究对必需特性和生物界面的见解。这些结果在设计心脏斑块的设计中提供了其他选择,以治疗MI和其他心脏疾病。
许多最近开发的无线皮肤界面生物电子设备都依赖于传统的热固性有机硅弹性体材料,例如聚二甲基硅氧烷 (PDMS),作为电子元件、射频天线和常见的可充电电池的软封装结构。在优化的布局和设备设计中,这些材料具有吸引人的特性,最突出的是它们即使在曲率高和自然变形较大的区域也能与皮肤形成温和、无创的界面。然而,过去的研究忽视了开发这些材料变体以进行多模式操作的机会,以增强设备对从机械损坏到热失控等故障模式的安全性。这项研究提出了一种自修复 PDMS 动态共价基质,其中嵌入了化学物质,可提供热致变色、机械致变色、应变自适应硬化和隔热,作为与安全相关的属性集合。该材料系统和相关封装策略的演示涉及一种无线皮肤界面设备,该设备可捕获健康状况的机械声学特征。这里介绍的概念可以立即应用于许多其他相关的生物电子设备。
美国加入第二次世界大战(1939-1945 年)后不久,第 90 轰炸机大队 (BG) 被编入美国陆军航空队 (USAAFs),隶属于 B-24 解放者重型轰炸机部队。成立六个月后,该大队被部署到太平洋战区,在接下来的三年里,其飞行员执行了数千次轰炸任务——击落 400 多架日本飞机,击沉 26 万吨敌舰,并获得 4,000 多项个人嘉奖。该部队最终获得了六枚二战战役飘带、两枚杰出单位嘉奖和一枚菲律宾总统单位嘉奖。这些功绩为盟军在太平洋的胜利铺平了道路,但也牺牲了 820 名人员。 90 BG 在战争中经历了惨痛经历,因此采用了“Jolly Rogers”这个绰号,并设计了与之相符的“骷髅和十字炸弹”徽章,将其涂在飞机尾翼上。本指南介绍了 Jolly Roger 这个名字的起源、该大队下属中队的名称以及它们各种徽章的制作过程。
摘要简介转移工人患肥胖和2型糖尿病的风险增加。与内源性昼夜节律同步饮食和睡眠会导致体重增加,高血糖和胰岛素抵抗。促进体重减轻并减少夜间饮食的代谢后果的干预措施对于夜班工人需要。这项研究的目的是检查三种减肥策略对夜班工人中体重减轻和胰岛素抵抗(HOMA-IR)的影响。方法和分析多站点18个月的三个手臂随机对照试验比较了三个体重减轻策略;连续的能量限制;以及两种间歇性禁食策略,参与者每周将禁食2天(5:2);白天(5:2d)或夜班(5:2n)。参与者将在24周(减肥阶段)中随机分为减肥策略,并在12个月后(维护阶段)随访。主要结果是体重减轻和HOMA-IR的变化。次要结果包括葡萄糖,胰岛素,血脂,身体成分,腰围,身体活动和生活质量的变化。评估将在基线,24周(主要终点)和18个月(12个月的随访)进行。研究营养师将通过面对面和远程医疗咨询的结合进行干预。混合效应模型将用于识别因遵循意图对处理方法的群体,时间和小组 - 时间相互作用的预测变量的相关结果(重量和HOMA-IR)的变化。伦理和传播该协议得到了Monash Health人类研究伦理委员会(RES 19-0000-462A)的批准,并在Monash University人类研究伦理委员会注册。还从南澳大利亚大学(HREC ID:202379)和救护车维多利亚研究委员会(R19-037)获得了道德批准。从此
以人为本的人工智能:新时代精神 Yvonne Rogers,伦敦大学学院 UCLIC Hancock 的文章读起来就像一篇文学作品,充满了深奥的措辞和一些奇怪的拉丁语。这是一篇巧妙的散文,用尖锐的隐喻警告我们,未来会出现故障、功能失调和失效的自主机器,如果我们不采取有力的措施,它们可能会给社会带来严重破坏,甚至摧毁我们。最戏剧性的类比之一是将自主系统比作从海洋中升起的一圈火山岛的演变;是突然和爆炸性的,而不是缓慢渐进的演变。相比之下,我们人类被视为扮演着“海滩和河岸线的沿海角色”,随着火山喷发而消退。海洋形象确实描绘了一个世界末日的未来。我读这本书的时候想象自己听到了《世界大战》的配乐。那么,在为时已晚之前,我们能够、应该做些什么来应对预测中的自动机器的突然爆发呢?汉考克建议投入数十亿美元来培训一批新的机器法医心理学家,他们将能够比我们现在更清楚地了解机器的大脑,更好地理解它们为什么会选择特定的行动。这一切都很好,也是一种必要的战斗号召。但这已经开始在更广泛的人工智能领域发生——尽管规模并不宏大。越来越多的人机交互 (HCI) 研究人员、计算机科学家、哲学家和心理学家正在解决和面对人工智能的自主性——研究如何用替代的透明算法来取代它,这些算法将允许人类(和其他机器)检查、理解和纠正机器学习和机器决策,这些算法被编程来执行。让人工智能更加公平、负责、可解释和不偏不倚已成为普遍接受的目标。关于如何实现这一目标,已经发布了许多框架、白皮书和政策。例如,今年早些时候,欧盟发布了一项法规,其中除了详细的指导、规则和限制外,还建议禁止对人类造成或可能造成“身体或心理”伤害的人工智能系统。这些系统包括在人们不知情的情况下识别他们的面部和面部表情的自主系统;自动决定是否允许他们获得贷款、信贷、工作等。斯坦福大学开创性 HAI 中心的 Katharine Miller (2021) 刚刚发表了一篇关于未来工作的文章,她主张用鼓励以人为本的工作场所的替代价值观取代人工智能驱动的自动化理念。汉考克最近发表的反对自动驾驶技术的文章最让我吃惊的是——考虑到它已提交给《人机交互杂志》——它没有提到如果我们假设我们不希望技术完全自动化,我们应该考虑和设计什么样的控制、交互和界面。文章中间有一句话声称我们“正在见证人机交互和协作的关键分水岭”。但没有进一步说明这些是什么。
摘要 目标 迄今为止,医疗保健领域已经开发了许多人工智能 (AI) 系统,但采用程度有限。这可能是由于评估不适当或不完整以及缺乏国际公认的 AI 评估标准。为了对 AI 系统在医疗保健领域的通用性有信心并使其能够融入工作流程,需要一种实用而全面的工具来评估现有 AI 系统的转化方面。目前,医疗保健领域可用的 AI 评估框架侧重于报告和监管方面,但对于评估 AI 系统的转化方面(如功能、实用性和道德组成部分)几乎没有指导。 方法 为了解决这一差距并创建一个评估现实世界系统的框架,一个国际团队开发了一个以转化为重点的评估框架,称为“医疗保健 AI 的转化评估 (TEHAI)”。对文献的批判性回顾评估了现有的评估和报告框架和差距。接下来,使用健康技术评估和转化原则,确定了要考虑的报告组成部分。由八名专家组成的国际小组对这些组成部分进行了独立审查,以达成共识,将其纳入最终框架。结果 TEHAI 包括三个主要组成部分:能力、实用性和采用。对模型开发和部署的转化和伦理特征的重视使 TEHAI 有别于其他评估工具。讨论 现有报告或评估框架的一个主要限制是其重点狭窄。具体而言,评估组件可应用于 AI 系统开发和部署的任何阶段。由于 TEHAI 在转化研究模型中有着坚实的基础,并且强调安全性、转化价值和普遍性,因此它不仅具有理论基础,而且在评估现实世界系统方面也有实际应用。结论 用于开发 TEHAI 的转化研究理论方法不仅应将其应用于研究环境中的临床 AI 评估,还应更广泛地用于指导对工作临床系统的评估。
摘要 目标 迄今为止,医疗保健领域已经开发了许多人工智能 (AI) 系统,但采用程度有限。这可能是由于评估不适当或不完整以及缺乏国际公认的 AI 评估标准。为了对 AI 系统在医疗保健领域的通用性有信心并使其能够融入工作流程,需要一种实用而全面的工具来评估现有 AI 系统的转化方面。目前,医疗保健领域可用的 AI 评估框架侧重于报告和监管方面,但对于评估 AI 系统的转化方面(如功能、实用性和道德组成部分)几乎没有指导。 方法 为了解决这一差距并创建一个评估现实世界系统的框架,一个国际团队开发了一个以转化为重点的评估框架,称为“医疗保健 AI 的转化评估 (TEHAI)”。对文献的批判性回顾评估了现有的评估和报告框架和差距。接下来,使用健康技术评估和转化原则,确定了需要考虑的报告组件。由八名专家组成的国际小组对这些组件进行了独立审查,以达成共识,将其纳入最终框架。结果 TEHAI 包括三个主要组成部分:能力、实用性和采用。对模型开发和部署的转化和道德特征的强调使 TEHAI 有别于其他评估工具。具体而言,评估组件可应用于 AI 系统开发和部署的任何阶段。讨论 现有报告或评估框架的一个主要限制是其重点狭窄。由于 TEHAI 在转化研究模型方面有着坚实的基础,并且强调安全性、转化价值和通用性,因此它不仅具有理论基础,而且在评估现实世界系统方面也有实际应用。结论 用于开发 TEHAI 的转化研究理论方法不仅应应用于研究环境中临床 AI 的评估,还应更广泛地指导工作临床系统的评估。
欧洲科学代表了现代研究的一个引人注目的领域,其目标是建立对动物(包括我们自己)复杂行为背后原理的理解 1 。成功的结果不仅有助于我们了解自然界,而且将对神经系统疾病治疗方法的发展产生深远的影响 2 。一项重大努力集中于开发先进的可植入神经技术,作为神经系统各个部分的双向接口。当与遗传神经生物学的新兴方法相结合时,这些平台为神经科学研究创造了丰富的实验选择(图 1 和框 1 ),特别是对于涉及自由行为的小动物模型作为个体或相互作用的社会群体的研究。最成熟的平台包括用于电生理和电刺激的市售无线系统(例如,Neuropixels)、用于成像神经活动的光纤荧光显微镜(例如,Inscopix)和用于神经调节的完全可植入的微型发光二极管(例如,Neurolux)。一组平行的探索性努力围绕着不寻常且具有强大潜力的概念展开,这些概念包括类神经元电极 3、4、混合生物-非生物电极 5、6、平面互补金属氧化物半导体系统作为高密度电生理映射平台 7、可注射生物共轭纳米材料作为磁和/或电磁形式神经调节 8、9 和成像 10、11 的传感剂、可植入光电微芯片作为神经调节源 12 以及使用超声波作为无线电力传输和通信载体以监测神经活动的微创组件 13。这些想法中的许多可能会成为未来重要且广泛应用的技术的基础,也可能成为代表本综述核心内容的技术的增强。本综述重点介绍尚未广泛商业化但在近期具有强大潜力的神经技术
持久、高分辨率、超薄且灵活的神经接口对于精确的大脑映射和高性能神经假体系统至关重要。要扩展到对大脑大区域的数千个位置进行采样,需要集成供电电子设备,将许多电极多路复用到几根外部电线上。然而,现有的多路复用电极阵列依赖于封装策略,而这些策略的植入寿命有限。在这里,我们开发了一种灵活的多路复用电极阵列,称为“神经基质”,可在啮齿动物和非人类灵长类动物中提供稳定的体内神经记录。神经基质可持续使用一年以上,并使用一千多个通道对厘米级的大脑区域进行采样。本文描述的持久封装(预计至少可持续 6 年)、可扩展的设备设计和迭代体内优化是克服下一代神经技术面临的当前障碍的重要组成部分。
岛屿可持续性会议 亨克·B·罗杰斯 (Henk B. Rogers) 是全球减少并最终消除人类对化石燃料依赖的主要倡导者和活动家之一,他将在即将举行的第 11 届关岛大学岛屿可持续性会议上发表主旨演讲。该会议将于 3 月 31 日至 4 月 3 日在关岛凯悦酒店举行。“随着最近通过的第 35-46 号公共法案承诺到 2045 年关岛实现 100% 可再生能源生产,亨克·罗杰斯先生来此激励我们岛屿以及来自其他岛屿、致力于实现类似政策的客人,并与他们分享他的真知灼见可谓恰逢其时,”关岛大学岛屿可持续性中心主任奥斯汀·J·谢尔顿说道。罗杰斯是蓝色星球基金会的创始人、远见者和董事会主席,该基金会为夏威夷制定一项政策铺平了道路,该政策要求全州的电力公司到 2045 年实现 100% 可再生能源。他是蓝色星球能源公司的创始人兼首席执行官,该公司是家庭、企业和公用电网供电的储能系统(即电池)的领先供应商之一。该公司的技术正在提高电池系统的安全性、可靠性和能量输出。罗杰斯还是蓝色星球研究公司的创始人兼总裁,这是一家私人研究实验室,设计和建造了离网可再生能源基础设施、蓝色离子储能系统、HI-SEAS 火星/月球栖息地和氢气生产系统。