机器学习和人工智能 (ML/AI) 模型性能的不断提高,使得它们在日常生活中越来越常见,包括临床医学 (Bruckert 等人; Rosenfeld 等人,2021 年)。虽然对 ML/AI 工具不透明的“黑匣子”性质的担忧并不是什么新鲜事,但随着 ML/AI 设备从实验室转移到尚未完全赶上最先进水平的监管流程 (Benrimoh 等人,2018a) 并进入临床,对可解释性问题的实际解决方案的需求变得更加迫切。本特别版针对医疗保健领域实施 ML/AI 方法需要创新和更清晰的最佳实践的三个关键领域:确保安全、证明有效性和提供可解释性。值得注意的是,前两个标准长期以来一直是药品和医疗器械评估的主要内容(即,为了获得批准用于人类,产品必须证明其安全有效——通常与合理的比较物进行比较)(Sp ł awi´nski 和 Ku´zniar,2004 年)。第三个要求——可解释性——似乎是 ML/AI 所独有的,因为它面临着解释模型如何得出越来越准确的结论的挑战。然而,经过仔细研究,人们可能会认为可解释性标准在过去就已经隐含了:药物和设备的作用机制通常在其产品文档中描述(加拿大卫生部,2014 年)。然而,这可能会产生误导。例如,许多药物具有已知的受体结合谱和假定的作用机制,尽管它们在临床实践中广泛使用,但它们产生作用的确切机制仍不清楚。这方面的主要例子是锂(Shaldubina 等人,2001)和电休克疗法(Scott,2011),这两种治疗方法都存在已久且非常有效,但其作用机制仍存在争议。事实上,即使是全身麻醉的确切机制也是争论的主题(Pleuvry,2008)。因此,我们必须考虑一个折衷方案——即足够的可解释性(Clarke 和 Kapelner)。这涉及回答以下问题:我们必须对模型了解多少才能确定它在临床实践中是安全的?本期特刊中的文章开始探讨这一问题的可能答案,以及 ML/AI 在医疗保健环境中的应用中的其他关键问题。
1900 年 12 月 14 日,马克斯·普朗克向德国物理学会提交了他对黑体辐射分布定律的推导,能量量子的概念首次出现在物理学中。考虑到量子理论产生的巨大影响,令人惊讶的是,很少有人关注普朗克迈出引入量子的第一步的推理的详细研究。当然,文献中有许多关于量子理论起源的描述,但几乎所有这些描述在历史上都是不准确的、缺乏批判性的,而且对于普朗克自己的工作及其背景都具有很大的误导性。我们确实有普朗克的回顾性记述[1],这些记述清晰而一致地描绘了他自己对这一发展的看法,还有罗森菲尔德[21]的一篇关于量子理论早期的优秀专著,该书对普朗克的工作进行了恰当的历史背景介绍,但鲜为人知。在我看来,如果我们要充分理解普朗克决定性一步的性质,以及它在多大程度上标志着与先前思想的真正决裂,仍然有两个关键问题必须回答,这两个问题并非毫无关联。第一个问题实际上是一个历史问题:普朗克是否知道瑞利推导出的辐射分布定律是经典物理学的必然结果?大多数作者对这个问题的回答是肯定的,并将普朗克引入量子描述为他对经典理论与实验结果不一致以及经典理论在“紫外灾变”中表现出的内部失败所带来的“危机”挑战的回应。事实上,根本没有这样的危机,或者说根本没有意识到这样的危机。1900 年夏天之前,所有关于黑体辐射的研究都是在不了解古典物理学对这个问题意味着什么的情况下进行的。直到 1900 年 6 月,瑞利勋爵才发表了一份两页的说明,其中首次推导出古典分布定律,瑞利论文的非常严重的意义在相当长一段时间内才被普遍认识到。普朗克在 1900 年和 1901 年的论文中没有提到瑞利的说明,在多年后发表的关于量子理论起源的论述中也没有提到瑞利。然而,普朗克似乎知道瑞利的工作,但他并不认为它比他对大约在同一时间发表的其他几篇论文更有意义,在这些论文中,或多或少地尝试了临时方法。
引言人工智能 (AI) 的发展已展现出令人瞩目的性能,特别是在图像处理或游戏等明确定义的领域。然而,所部署的技术对于人类用户来说可能是不透明的,这引发了一个问题:人工智能系统如何提供解释 (Neerincx 等人,2018 年;Rosenfeld 和 Richardson,2019 年),并且监管框架对可解释人工智能 (XAI) 的需求日益增长。话虽如此,2017 年,谷歌的研究主管 Peter Norvig 指出,在人类可能不擅长提供“解释”的情况下期望计算机提供“解释”是具有讽刺意味的。可解释人工智能 (XAI) 的大部分工作都严重依赖于以计算机为中心的视角 (Springer,2019 年)。例如,Holzinger 等人 (2020) 假设人类和人工智能系统可以平等地访问“基本事实”。由此可见,可解释性“……突出了机器表示中与决策相关的部分……,即有助于模型在训练中的准确性或特定预测的部分。”与许多 XAI 文献一样,这并没有为人类提供任何角色,只能作为被动接受者。这意味着人工智能系统能够反省自己的过程来生成解释。然后将得到的解释呈现给用户,并描述人工智能系统的流程或它使用过的特征(“决策相关部分”)。这样,解释就只是一个建议(来自人工智能系统)加上与此相关的特征。正如 Miller (2017) 所指出的那样,这种态度的一个问题在于,它是基于设计师对什么是“好的”解释的直觉,而不是基于对人类如何响应和利用解释的合理理解。这并不能说明为什么选择某些特征,也不能说明为什么建议适合用户的关注点。它也没有将解释置于更广泛的组织中;分析师的解释可能与数据收集管理人员或接受分析师简报的经理的解释不同。对于 Holzinger 等人 (2020) 来说,情况的各个方面(定义为基本事实)被组合成一个陈述;也就是说,解释只是这个陈述的一种表达。这意味着从特征到解释存在线性插值。这类似于 Hempel 和 Oppenheim (1948) 的“覆盖定律模型”,该模型关注的是历史学家如何根据先前的原因来解释事件。然而,“基本事实”(由 Holzinger 的过程模型和覆盖定律模型假设)很少得到完全定义(导致在选择相关特征时产生歧义)。这意味着,仅仅陈述情况方面而不说明为什么选择这些方面(而不是其他方面)可能不会产生有用或可用的解释。霍夫曼等人(2018)对与解释相关的文献进行了全面的回顾。从这篇评论来看,解释涉及人类的理解(将人工智能系统的输出置于特定情境中),我们同意,考虑这一点的适当框架是数据框架的理解模型(Klein 等人,2007)。此外,理解(及其与解释的关系)依赖于认识到过程(提供和接收解释)必须是相互的、迭代的和协商的。这个过程依赖于“解释者”和“被解释者”达成一致。换句话说,解释涉及“共同点”(Clark,1991),其中理解上有足够的一致性以使对话继续进行。对话的性质将取决于提供解释的情况和被解释者的目标。例如,被解释者可能是“受训者”,他试图理解解释以学习决策标准,也可能是“分析师”,使用人工智能系统的建议作为政策。
18医学遗传学,意大利锡耶纳大学,锡耶纳大学医院19医学遗传学,锡耶纳大学,意大利锡耶纳大学20 Med Biotech Hub和能力中心,医学生物技术系,锡耶纳大学,锡耶纳大学,意大利锡耶纳大学,意大利21分子与发展学系, 53100,意大利锡耶纳
1。Lamb AN,Rosenfeld JA,Neill NJ等。 在12p12.1时Sox5的单倍不足与具有明显的行为延迟,行为问题和轻度畸形特征的发育延迟有关。 嗡嗡声突变。 2012; 33:728-740。 2。 Aza-Carmona M,Shears DJ,Yuste-Checa P等。 shox与软骨的转录因子Sox5和Sox6相互作用,以使Aggrecan增强剂作用。 hum mol Genet。 2011; 20:1547-1559。 3。 Harley VR,Clarkson MJ,Argentaro A. 睾丸确定因子的分子作用和调节,SRY(Y染色体上的性别确定区域)和Sox9 [与SRY相关的高弹性组(HMG)Box 9]。 Endocr Rev。 2003; 24:466-487。 4。 Truebestein L,Leonard TA。 盘绕螺旋:长而短。 生物评估。 2016; 38:903-916。 5。 Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。Lamb AN,Rosenfeld JA,Neill NJ等。在12p12.1时Sox5的单倍不足与具有明显的行为延迟,行为问题和轻度畸形特征的发育延迟有关。嗡嗡声突变。2012; 33:728-740。2。Aza-Carmona M,Shears DJ,Yuste-Checa P等。shox与软骨的转录因子Sox5和Sox6相互作用,以使Aggrecan增强剂作用。hum mol Genet。2011; 20:1547-1559。3。Harley VR,Clarkson MJ,Argentaro A. 睾丸确定因子的分子作用和调节,SRY(Y染色体上的性别确定区域)和Sox9 [与SRY相关的高弹性组(HMG)Box 9]。 Endocr Rev。 2003; 24:466-487。 4。 Truebestein L,Leonard TA。 盘绕螺旋:长而短。 生物评估。 2016; 38:903-916。 5。 Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。Harley VR,Clarkson MJ,Argentaro A.睾丸确定因子的分子作用和调节,SRY(Y染色体上的性别确定区域)和Sox9 [与SRY相关的高弹性组(HMG)Box 9]。Endocr Rev。2003; 24:466-487。 4。 Truebestein L,Leonard TA。 盘绕螺旋:长而短。 生物评估。 2016; 38:903-916。 5。 Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。2003; 24:466-487。4。Truebestein L,Leonard TA。盘绕螺旋:长而短。生物评估。2016; 38:903-916。 5。 Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。2016; 38:903-916。5。Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。Ikeda T,Zhang J,Chano T等。识别和表征人类长的SOX5(L-SOX5)基因。基因。2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。2002; 298:59-68。6。Wu L,Yang Z,Dai G等。SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。Acta Biochim Biophys罪。2022; 54:987-998。7。Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。Kwan KY,Lam MM,Krsnik Z等。SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。Proc Natl Acad Sci u s a。2008; 105:16021-16026。 8。 神经元。2008; 105:16021-16026。8。神经元。Lai T,Jabaudon,BJ和Al。 SOX5皮质果神经元神经元的依次属。 2008; 57:232-247。 9。 Martin-Mors PL,AC女王,倒钩,道德AV。 sox5按照wnt-beta诱导的途径符合这种新进展的这种进展。 REP。 2010; 11:466-4 10。 问题交流,Stolt CC,Coral R和Al。 neu-robiol必须 2015; 75:522-538。 11。 li,menine menendize c,garci-corse l和al。 我们需要新的成年干细胞操作。 rep眼。 2022; 38:1 12。 Edgerley K,Bryson L,Hanington L和Al。 SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。 am j with genet a 2023; 191:1447-1458。 13。 扬声器M,Na和Al。 变体解释使用人群数据:第一GMMAD。 Mutat的Hum 2022; 43:1012-1 14。 Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。 基因组医学。 2021; 13:31。 15。 ioannidis NM,Rothstein JH,Pejaver V和Al。 reve:变体的致病性。 am j hum genet 2016; 99:877-885。Lai T,Jabaudon,BJ和Al。SOX5皮质果神经元神经元的依次属。2008; 57:232-247。 9。 Martin-Mors PL,AC女王,倒钩,道德AV。 sox5按照wnt-beta诱导的途径符合这种新进展的这种进展。 REP。 2010; 11:466-4 10。 问题交流,Stolt CC,Coral R和Al。 neu-robiol必须 2015; 75:522-538。 11。 li,menine menendize c,garci-corse l和al。 我们需要新的成年干细胞操作。 rep眼。 2022; 38:1 12。 Edgerley K,Bryson L,Hanington L和Al。 SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。 am j with genet a 2023; 191:1447-1458。 13。 扬声器M,Na和Al。 变体解释使用人群数据:第一GMMAD。 Mutat的Hum 2022; 43:1012-1 14。 Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。 基因组医学。 2021; 13:31。 15。 ioannidis NM,Rothstein JH,Pejaver V和Al。 reve:变体的致病性。 am j hum genet 2016; 99:877-885。2008; 57:232-247。9。Martin-Mors PL,AC女王,倒钩,道德AV。sox5按照wnt-beta诱导的途径符合这种新进展的这种进展。REP。 2010; 11:466-4 10。 问题交流,Stolt CC,Coral R和Al。 neu-robiol必须 2015; 75:522-538。 11。 li,menine menendize c,garci-corse l和al。 我们需要新的成年干细胞操作。 rep眼。 2022; 38:1 12。 Edgerley K,Bryson L,Hanington L和Al。 SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。 am j with genet a 2023; 191:1447-1458。 13。 扬声器M,Na和Al。 变体解释使用人群数据:第一GMMAD。 Mutat的Hum 2022; 43:1012-1 14。 Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。 基因组医学。 2021; 13:31。 15。 ioannidis NM,Rothstein JH,Pejaver V和Al。 reve:变体的致病性。 am j hum genet 2016; 99:877-885。REP。2010; 11:466-410。问题交流,Stolt CC,Coral R和Al。neu-robiol必须2015; 75:522-538。11。li,menine menendize c,garci-corse l和al。我们需要新的成年干细胞操作。rep眼。2022; 38:112。Edgerley K,Bryson L,Hanington L和Al。 SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。 am j with genet a 2023; 191:1447-1458。 13。 扬声器M,Na和Al。 变体解释使用人群数据:第一GMMAD。 Mutat的Hum 2022; 43:1012-1 14。 Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。 基因组医学。 2021; 13:31。 15。 ioannidis NM,Rothstein JH,Pejaver V和Al。 reve:变体的致病性。 am j hum genet 2016; 99:877-885。Edgerley K,Bryson L,Hanington L和Al。SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。am j with genet a2023; 191:1447-1458。13。扬声器M,Na和Al。变体解释使用人群数据:第一GMMAD。Mutat的Hum2022; 43:1012-114。Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。基因组医学。2021; 13:31。15。ioannidis NM,Rothstein JH,Pejaver V和Al。reve:变体的致病性。am j hum genet2016; 99:877-885。2016; 99:877-885。16。Macnee M,Perez-Palma E,Brunger T等。cnv-clinviewer:在线增强对大型拷贝数变体的临床解释。生物信息学。2023; 39:1-6。
通过思维与效应器进行交互,可以使这些患者在日常生活中恢复一定的自主权。例如,基于运动想象的 BCI 已被用于控制脊髓损伤后截瘫或四肢瘫痪患者的上肢( Hochberg 等人, 2012 年; Collinger 等人, 2013 年; Wodlinger 等人, 2014 年; Edelman 等人, 2019 年)、下肢( López-Larraz 等人, 2016 年; He 等人, 2018 年)和四肢( Benabid 等人, 2019 年)的假肢或外骨骼。在本研究中,我们重点研究基于皮层脑电图 (ECoG) 的运动 BCI,这是一种很有前途的工具,与更具侵入性的方法相比,它可以实现神经假体控制的连续 3D 手部轨迹解码,同时降低植入风险 ( Volkova 等人,2019)。BCI 记录神经元活动并将其解码为效应器的控制命令。解码器通常以监督的方式使用机器学习算法进行训练。在绝大多数研究中,由于对记录的访问有限,训练数据集受到严格限制。同时,数据集大小是机器学习分析中的一个重要因素,会极大地影响整个系统的性能。与最近的计算机视觉和自然语言处理研究(Kaplan 等人,2020 年;Rosenfeld 等人,2020 年;Hoiem 等人,2021 年)相比,对于 BCI,很少研究训练数据的最佳数量,即解码器性能在给定应用中达到稳定状态的数量(Perdikis and Millan,2020 年)。尤其是学习曲线,它提供了对模型性能和训练集大小之间关系的洞察,但却很少被提出。学习曲线可用于模型选择、减少模型训练的计算量或估计向训练数据集添加更多数据的理论影响(Viering and Loog,2021 年)。考虑到人类记录的数据集的访问权限有限,最后一点在 BCI 中尤为重要。如果不知道系统性能和数据集大小之间的关系,就很难确定提高解码器准确性的策略:增加训练数据量还是增加模型容量。对于基于 ECoG 的运动 BCI,大多数模型的容量有限。所使用的解码器是卡尔曼滤波器(Pistohl 等人,2012 年;Silversmith 等人,2020 年)并且大多是线性模型的变体(Flamary 和 Rakotomamonjy,2012 年;Liang 和 Bougrain,2012 年;Nakanishi 等人,2013 年、2017 年;Chen 等人,2014 年;Bundy 等人,2016 年;Eliseyev 等人,2017 年)。在大多数这些研究中,解码器优化都是在包含几分钟或几十分钟信号的数据库上进行的。这会产生可用的模型,但并未提供有关可以通过更多数据实现的性能提升的任何信息,也没有比较多个解码器之间的数据量/性能关系。在 BCI 中,模型特征和学习曲线并不是影响解码器性能的唯一因素。人类生成独特脑信号模式的能力对于 BCI 系统至关重要。近年来的研究主要集中在开发越来越高效的解码器上,例如深度学习 (DL)(Bashivan 等人,2015 年;Elango 等人,2017 年;Schirrmeister 等人,2017 年;Du 等人,2018 年;Lawhern 等人,2018 年;Pan 等人,2018 年;Xie 等人,2018 年;Zhang 等人,2019 年;Rashid 等人,2020 年;´ Sliwowski 等人,2022 年),而不是耐心学习或共同适应(Wolpaw 等人,2002 年;Millan,2004 年),尽管一些研究表明
A Armatol 1 , E Armengaud 1 , W Armstrong 2 , C Augier 3 , FT Avignone III 4 , O Azzolini 5 , A Barabash 6 , G Bari 7 , A Barresi 8 , 9 , D Baudin 1 , F Bellini 10 , 11 , G Benato 12 , M Beretta 13 , L Berg´e 14 , M Biassoni 8 , J Billard 3 , V Boldrini 7 , 15 , A Branca 8 , 9 , C Bro↵erio 8 , 9 , C Bucci 12 , J Camilleri 16 , S Capelli 8 , 9 , L Cappelli 12 , L Cardani 10 , P Carniti 8 , 9 , N Casali 10 , A Cazes 3 , E Celi 12, 17, C Chang 2, M Chapellier 18, A Charrier 19, D Chiesa 8, 9, M Clemenza 8, 9, I Colantoni 10, 20, F Collamati 10, S Copello 21, 22, O Cremonesi 8, RJ Creswick 4, A Cruciani 10, A D'Addabbo 12, 17, G D'Imperio 10, I Dafinei 10, FA Danevich 23, M de Combarieu 19, M De Jesus 3, P de Marcillac 14, S Dell'Oro 8, 9, 16, S Di Domizio 21, 22, V Domp`e 10, 11, A Drobizhev 24,L Dumoulin 18,G Fantini 10,11,M Faverzani 8,9,E Ferri 8,9,F Ferri 1,F Ferroni 10,17,E Figueroa-Feliciano 25,J Formaggio 26,J Formaggio 26,A Franceschi 27 ,L Gironi 8,9,A Giuliani 14,P Gorla 12,C Gotti 8,P Gras 1,M Gros 1,TD Gutierrez 29,K Han 30,EV Hansen 13,KM Heeger 31, DL Helis 1 , HZ Huang 28, 32 , RG Huang 13, 24 , L Imbert 18 , J Johnston 26 , A Juillard 3 , G Karapetrov 33 , G Keppel 5 , H Khalife 14 , VV Kobychev 23 , J Kotila 31, 44 , Yu G Kolomensky 13, 24 , S Konovalov 6 , Y Liu 34 , P Loaiza 14 , L Ma 28 , M Madhukuttan 18 , F Mancarella 7, 15 , R Mariam 14 , L Marini 12, 13, 24 , S Marnieros 14 , M Martinez 35, 36 , RH Maruyama 31 , B Mauri 1 , D Mayer 26 , Y Mei 24 , S Milana 10 , D Misiak 3 , T Napolitano 27 , M Nastasi 8 , 9 , XF Navick 1 , J Nikkel 31 , R Nipoti 7 , 15 , S Nisi 12 , C Nones 1 , EB Norman 13 , V Novosad 2 , I Nutini 8 , 9 , T O'Donnell 16 , E Olivieri 14 , C Oriol 14 , JL Ouellet 26 , S Pagan 31 , C Pagliarone 12 , L Pagnanini 12 , 17 , P Pari 19 , L Pattavina 12 , 37 , B Paul 1 , M Pavan 8 , 9 , H Peng 38 , G Pessina 8 , V佩蒂纳奇 10 , C 皮拉 5 , S 皮罗 12 , DV 波达 14 , T 波拉科维奇 2 , OG 波利舒克 23 , S 波齐 8 , 9 , E 普雷维塔利 8 , 9 , A 普尤 12 , 17 , S 奎塔达莫 12 , 17 , A 雷萨 10 , 11 , R 里佐利 7 , 15 , C 罗森菲尔德 4 , C 鲁斯科尼 12 , V 桑格拉德 3 , J 斯卡帕奇 14 , B 施密特 24 , 25 , V 夏尔马 16 , V 施莱格尔 39 , V 辛格 13 , M 西斯蒂 8 , D 斯佩勒 31 , PT 苏鲁库奇 31 , L 塔↵阿雷洛 41 , O 特利尔1 , C 托梅 10 , VI 特雷季亚克 23 , A 茨姆巴留克 5 , M 维拉斯奎兹 42 , KJ 维特尔 13 , SL 瓦加拉奇 13 , G 王 2 , L 王 34 , B 韦利弗 24 , J 威尔逊 4 , K 威尔逊 4 , LA 温斯洛 26 , M 薛 38 , L 严 28 , J 杨 38 , V 叶夫列缅科 2 , V 尤马托夫 6 , MM 扎里茨基 23 , J 张 2 , A 佐洛塔罗娃 14 , S 祖切利 7 , 43
为什么不植入人工耳蜗?参数会影响符合条件的小儿候选者的人工耳蜗的决定。 4:00 PM 5:00 PM Panel #4 - Debate and Discussion - A Sound Decision: Weighing Cochlear Implantation in Children with Unilateral Hearing Loss 5:00 PM 6:00 PM Meet the Authors Poster Reception ROOM 2 - Montreal BR 1-3 6:30 AM 7:30 AM Industry Sponsored Symposia - TBD 6:30 AM 7:30 AM ASPO FUN RUN 8:00 AM 10:00 AM No concurrent session - see room 1上午10:00上午10:20上午10:20与参展商休息10:20 AM 11:20 AM面板#2-棉花件面板:塑造未来:耳鼻喉科的创新和AI 11:20 AM 12:00 PM#7#7摘要会议(5个摘要 + 10分钟 + 10分钟Q&A) - 创新和基础科学障碍:使用人工智能在人工培养机构中进行自动培养机器人的脚本,以便自动培养机器人的脚本,以供自动培养机器人工具机构,研究气管上皮细胞相互作用以及成纤维细胞生长因子在气管发育巨噬细胞极化状态中的作用。 AVM壁细胞在相邻AVM内皮中启动内皮到间充质转变。 Initial Insights on Alpelisib for Pediatric Cervicofacial Lymphatic Malformations 12:00 PM 1:30 PM lunch with exhibitors 1:30 PM 3:00 PM No concurrent session - see room 1 3:00 PM 3:20 PM break with exhibitors 3:20 PM 4:20 PM Panel #5 - To bronch or not to bronch: Does routine surveillance endoscopy improve pediatric tracheostomy结果? 5:00 PM 6:00 PM与作者海报接待见面参数会影响符合条件的小儿候选者的人工耳蜗的决定。4:00 PM 5:00 PM Panel #4 - Debate and Discussion - A Sound Decision: Weighing Cochlear Implantation in Children with Unilateral Hearing Loss 5:00 PM 6:00 PM Meet the Authors Poster Reception ROOM 2 - Montreal BR 1-3 6:30 AM 7:30 AM Industry Sponsored Symposia - TBD 6:30 AM 7:30 AM ASPO FUN RUN 8:00 AM 10:00 AM No concurrent session - see room 1上午10:00上午10:20上午10:20与参展商休息10:20 AM 11:20 AM面板#2-棉花件面板:塑造未来:耳鼻喉科的创新和AI 11:20 AM 12:00 PM#7#7摘要会议(5个摘要 + 10分钟 + 10分钟Q&A) - 创新和基础科学障碍:使用人工智能在人工培养机构中进行自动培养机器人的脚本,以便自动培养机器人的脚本,以供自动培养机器人工具机构,研究气管上皮细胞相互作用以及成纤维细胞生长因子在气管发育巨噬细胞极化状态中的作用。AVM壁细胞在相邻AVM内皮中启动内皮到间充质转变。Initial Insights on Alpelisib for Pediatric Cervicofacial Lymphatic Malformations 12:00 PM 1:30 PM lunch with exhibitors 1:30 PM 3:00 PM No concurrent session - see room 1 3:00 PM 3:20 PM break with exhibitors 3:20 PM 4:20 PM Panel #5 - To bronch or not to bronch: Does routine surveillance endoscopy improve pediatric tracheostomy结果?5:00 PM 6:00 PM与作者海报接待见面5:00 PM 6:00 PM与作者海报接待4:20 pm 5:00 pm#6摘要会议(5个摘要 + 10分钟问答) - 喉喉超声的大量气道重建患者在大量气道重建患者中的诊断精度在第三级护理小儿培养基中心的诊断中,在生物学上的播种过程中,喉部超声的诊断准确性在此上层状细胞上均能发挥作用。Objectively measuring attentional bias and social attention towards children with tracheostomies Characterization of Pediatric Tracheomalacia through Morphometric Analysis of Dynamic Imaging throughout the Respiratory Cycle 5:00 PM 6:00 PM Meet the Authors Poster Reception ROOM 3 - Montreal BR 6-8 6:30 AM 7:30 AM Industry Sponsored Symposia 6:30 AM 7:30 AM ASPO FUN RUN 8:00 AM 10:00 AM No concurrent session - see room 1 10:00 AM 10:20 AM break with exhibitors 10:20 AM 11:00 AM #4 Abstract Session (5 abstracts + 10 minutes Q&A) - Equity and Access The Positive Impact of Language-Concordant Care on Patient Experience: Results from the Spanish Pediatric Otolaryngology Language-Concordant Clinic An Intentionally Diverse Randomized Clinical Trial to Address Income Disparities in Language Outcomes for Deaf and Hard-of-Hearing Children Does边缘化会影响小儿患者的鼓膜造口术插入的及时接触?社会经济因素对接受新生儿重症监护病房的婴儿气管造口术的长期结局的影响,一项选择手术或硬化疗法的单中心研究:淋巴畸形治疗治疗决策受到卫生的社会决定因素的影响,受到健康的决定因素11:00 AM 12:00 PM 12:00 pm 3-Rosenfeld Panel#3-相同的语言:我们在同一语言上说话吗?Evidence-Based Strategies for Effective Patient-Provider Communication 12:00 PM 1:30 PM lunch with exhibitors 1:30 PM 3:00 PM No concurrent session - see room 1 3:00 PM 3:20 PM break with exhibitors 3:20 PM 4:00 PM #3 Abstract Session (5 abstracts + 10 minutes Q&A) - Sleep "I took this video of my child sleeping,” Are parent-recorded videos useful in predicting the diagnosis of obstructive sleep apnea in children?降低神经刺激剂的放置,用于年轻13岁的唐氏综合症患者的阻塞性睡眠呼吸暂停,并获得小儿阻塞性睡眠呼吸暂停的护理决定因素:魁北克省圣洛朗(Quebec Bas Saint Saint Laurent)体验。质量改进项目,以改善接受扁桃体切除术,第一阶段的儿童术前沙丁胺醇的使用,基线数据分析理解常规卧床外科手术中心小儿小儿腺骨骼切除术4:00 pm 5:00 PM 5:00 PM PM PM 6 Pediatric Polysomnography to Relethighocraphy:retlethime inthime ince rethinkime nime nime nime nime nime nime nime nime nime nime nighime nime nime nime nime nime in in lime nime in lightime relethinge: