来自:Rostoker G、Cohen Y。Magne4C 共振成像对静脉注射铁剂治疗缺铁性贫血和透析相关性贫血的影响。计算机辅助断层扫描杂志。2014 年 11 月 1 日;38(6):843-4。hOps://pubmed.ncbi.nlm.nih.gov/25229202/ ______________________________________________________________________________ 背景:对于我们在神经学中的目的,有 2 个主要问题:
能带结构各点之间的散射矢量。在这方面,傅里叶变换的 QPI 图提供了拓扑绝缘体存在的首批实验证据之一,[4]因为它揭示了背向散射矢量处强度的“缺失”,正如理论所预测的那样。从理论的角度来看,QPI 图的计算主要基于模型方法,例如在拓扑绝缘体表面,[5]其中表面能带结构可以用简单的模型哈密顿量来近似。然而,一般而言,基于密度泛函的方法对于表面电子结构的实际描述是必需的,特别是杂质势,其中杂质周围的电荷弛豫在正确描述散射相移中起着重要作用。密度泛函计算的一个困难是缺陷引起的密度振荡范围非常大,可以达到几十甚至几百纳米,因此超晶胞方法实际上无法达到这个极限。这些挑战只能通过从头算格林函数嵌入方法来解决,比如 Korringa-Kohn-Rostoker(KKR)方法。作为一个应用的例子,我们参考了 Lounis 等人 [6] 对 Cu(111) 和 Cu(001) 表面上的 QPI 的计算,这是由于表面下埋藏着一个孤立杂质。这些结果表明,利用格林函数技术可以在相当大的表面积上对 QPI 图进行从头算计算。然而,对于傅里叶变换的 QPI 图,直接用格林函数卷积来表示结果是可行的[7],避免了计算大表面积中实空间图的中间步骤。在本文中,我们将探讨这个问题,并给出它在拓扑绝缘体领域的应用。在第 2 节中,我们概述了 KKR 方法中实空间和傅里叶变换 QPI 映射的形式。此外,我们讨论了多杂质实际情况的傅里叶变换 QPI,并认为多杂质问题可以用单杂质结果很好地近似。我们还讨论了扩展的联合态密度方法 (exJDOS)。在第 3 节中,我们将我们的形式应用于具有表面杂质的拓扑绝缘体 Bi 2 Te 3。这在 JuKKR 代码包中实现。[8] 最后,我们在第 4 节中进行了总结。
