摘要 本文介绍了一项关于旋转磁场 (RMF) 推进器低推力效率的实验研究。该技术成熟度较低,但可能成为使用替代推进剂实现高功率太空推进的候选技术。对 5 kW 级 RMF 推进器进行了直接推力台架测量,结果显示推力效率为 0.41 ± 0.04%,比冲为 292 ± 11 s - RMF 推进器运行的典型值。使用一套远场探测器为 RMF 推进器性能的现象学效率模型提供信息,该模型考虑了发散、功率耦合、质量利用率和等离子体/加速效率。结果发现等离子体效率处于临界低值,为 6.4 ± 1.0%。这表明 RMF 天线耦合到等离子体的大部分能量在转换为推进器光束中的定向动能之前就丢失了。为了确定这些损失的来源,使用三重朗缪尔探针对内部等离子体特性进行了时间分辨测量。发现碰撞激发辐射和壁面损失是两个主要的损失过程。与其他电力推进结构相比,该装置表现出异常高的等离子体密度(> 10 19 m − 3),这可以解释这一趋势。根据效率分析的结果,讨论了探测技术的局限性以及改进 RMF 推进器性能的策略。
抽象背景:旋转阳极X射线源的允许输入功率密度受到可用目标材料的性能的限制。尽管使用临床实践的变化,但使用的用于焦点表面温度的简化公式忽略了管电压。如本工作所提出的那样,改进了电子传输和靶标侵蚀的建模,可改善X射线输出降解对X射线输出降解,绝对X射线剂量输出以及诊断成像的质量和Orthovolt Cancer Cherapy的质量,用于广泛的技术因素。目的:改进电子功率吸收的建模以包括体积效应和表面侵蚀,以提高对X射线输出降低的理解,增强X射线管的可靠性并安全地扩大其使用场。方法:我们结合了蒙特卡洛电子传输模拟,耦合的热弹性有限元建模,侵蚀引起的表面粒度以及热物理和热机械目标特性的温度依赖性。提出了半经验的热机械标准来预测目标侵蚀。我们模拟了侵蚀的钨 - 侵蚀目标的吸收电子功率,并用带有球形单层的toge靶模仿,并与原始目标进行比较。Results: The absorbed electronic power and with it the conversion efficiency varies with tube voltage and the state of erosion.With reference to 80 kV (100%), the absorption of a severely eroded relative to a pristine target is 105% (30 kV), 99% (100 kV), 97% (120 kV), 96% (150 kV), 93% (200 kV), 87%(250 kV)和79%(300 kV)。我们表明,尽管表面加热的简单的müller -oosterkamp模型低估了较高的管电压相对于在80 kV下的运行的好处,但该误差限制为30 kV的误差低于-6%(建议还原),而300 kV + 13%(输入功率增加允许)。结论:纠正侵蚀目标材料的X射线转换效率,通常无法通过测量管电流来访问,这可能意味着对现有的X射线剂量计算进行校正。随着管电压增加的旋转阳极X射线试管的相对增加,其量大的电压易于预测的agnosmmüller– oosterkamp age agnosism age age agnosism age agnosism age age ageostermism age age age agnosism age age age age age agnosism agn依赖性的依赖性依赖于焦距的依赖性,这显着的量加热模型要小得多。钨孔和粒度的扩散率随着管电压增加的旋转阳极X射线试管的相对增加,其量大的电压易于预测的agnosmmüller– oosterkamp age agnosism age age agnosism age agnosism age age ageostermism age age age agnosism age age age age age agnosism agn依赖性的依赖性依赖于焦距的依赖性,这显着的量加热模型要小得多。钨孔和粒度的扩散率
旋转黑洞存储旋转能,可以提取。当黑洞浸入外部提供的磁场中时,重新连接了巨石内的磁场线可以产生负能量(相对于无穷大)粒子,而这些颗粒落入黑洞事件地平线中,而其他加速的颗粒逃脱了从黑洞中窃取能量的颗粒。我们分析表明,当黑洞旋转高(无量纲旋转A〜1)并且血浆被强磁化时,可以通过磁重新连接进行能量提取(等离子体磁化σ0> 1 = 3)。允许能量提取的参数空间区域取决于等离子体磁化和重新连接磁场线的方向。对于σ0≫1,发现被最大旋转黑洞吞咽的减速等离子体的无穷大的渐近负能量是ϵ∞ -≃-效应σ0= 3 p。逃脱到无穷大的加速等离子体,将黑洞能量渐近为每个焓ϵ∞dimplotighotilefforkloicking3σ0p。我们表明,通过逃逸等离子体从黑洞中提取的最大功率为p max extri〜0。1 M 2效应σ0P W 0(在此,M是黑洞质量,W 0是无碰撞等离子体状态的等离子体焓密度),碰撞状态低一个数量级。能量提取会在〜1时引起黑洞的显着染色。发现通过磁重连接在Ergosphere中的血浆能量过程的最大效率被发现为ηmax≃3= 2。由于在此处提出的场景中应间歇性地发生Ergosphere中的快速磁重新连接,因此预计黑洞中几个重力半径内的相关发射有望表现出爆发性质。
摘要 - 本文介绍了两种用于 42V 嵌入式应用的旋转电机设计程序。具体来说,对于电动助力转向,设计了由开关冗余功率转换器供电的三相内置式永磁同步电机 (PMSM) 和由新型六开关转换器供电的六相感应电机 (IM6),用于未来的 42V DC 系统。对于 PMSM,磁路已完全使用基于分析和有限元的软件优化进行设计。对于 IM6,使用了来自传统三相鼠笼式低功率感应机的经典磁路。根据功率重量比比较了最终设计结果。关键词:永磁同步机 - 感应机 - 容错设计 - 电动助力转向
摘要。在任何网站或百科全书中,例如大不列颠或维基百科,在“启发式”条目下,人们可以从生活的各个领域找到许多定义,参考和示例。但是,本文的作者无法找到与技术相关的示例,尤其是在机械工程中。这个事实激发了我们解决这个主题,尤其是因为实践和日常生活中的许多具体示例似乎非常适合证明启发式方法论在技术科学中的相关性。根据作者,在这种情况下,涡轮机械似乎特别感兴趣。这是关键的机械,即,失败威胁人类生命的机械。因此,开发高级工具来分析它们的重要性,尤其是在整个操作范围内(稳定和不稳定)。使用这些工具,可以有效地在决策过程中使用其智力,直觉和常识。因此形成了经典的启发式共生。本文展示了一个名为Meswir的高级计算机系统,该系统是在Gdańsk(IMP PAN)的波兰科学院流体流量机械研究所开发的,该机械产生了一系列有趣的诊断信息,包括多个旋转和与不平衡载体有关的多个旋转和随机错误。该研究是使用高速,低功率涡轮机作为例子进行的。尽管没有正式的理论证明其正确性,但获得的结果有助于得出正确的结论并做出明智的决策,这是决策启发式方法的本质。
在工业生产领域,状况监测在确保旋转机械的可靠性和寿命方面起着关键作用。由于大多数生产设施都严重依赖振动分析,因此它已成为条件监测实践的基石。但是,对振动信号的手动分析是一项耗时且专业的密集型任务,通常需要专门的领域知识。当前的研究通过提出一种新型的半自动诊断系统来解决上述挑战。该方法以快速傅立叶变换(FFT)频谱的形式利用历史振动数据。系统通过将频率范围划分为预定义的垃圾箱,并求和每个垃圾箱内的能量值,从而从频域中提取能量特征。随后,根据相应的机器条件将每个数据点标记为标记,从而使系统能够通过使用机器学习模型来学习诊断模式。这种方法通过最少的手动干预促进了有效而准确的诊断。产生的数据集有效地表示并提供了可解释的结果。支持向量机(SVM)和集成算法可立即诊断出故障,并以最小的错误率诊断。所提出的系统能够提供早期警告,从而防止进一步的恶化和计划外的下降。使用现实世界数据的实验验证证明了系统的功效,其准确性超过90%。
摘要:在固态锂离子电池(SLIB)研究的领域中,阳极开发仍然是焦点区域,因为固体电解质和阳极之间的接口在确定电池性能中起着至关重要的作用。在各种阳极材料中,由于其广泛的表面积,锋利的裸露边缘和高电导率,垂直排列的石墨烯纳米瓦尔(GNW)是有前途的候选者。这些功能为GNWS带来了提高固态电池效率和容量的巨大潜力。然而,在微波血浆化学蒸气沉积(MWPCVD)设备室中产生的等离子体表现出不均匀的分布,这使得在大面积上实现GNW均匀生长的挑战。为了改善GNW的生长期间的平面均匀性,将驱动电动机安装在基板支架下方,从而使底物在膜沉积过程中以恒定的速度旋转,从而增强了GNWS的平面均匀性。本文还表明,通过底物旋转,SLIBS的电荷分散性能得到改善。与先前报道的通过快速旋转和谐振场中缓慢搏动产生均匀的微波血浆的方法相比,这种设备的这种修饰更简单。此外,使用混合气体可以有效地改善面内GNW膜的均匀性,从而为SLIB阳极电极的质量产生提供可行的参考。
在过去的几十年中,风能发展迅速,目前是最有前途和经济可行的能源之一[2]。欧盟委员会的《2050 年能源路线图》指出,将增加对可再生能源技术的投资。预计到 2050 年,风力发电将比任何其他可再生能源技术提供更多的电力[3]。风力涡轮机主要可分为两大类:水平轴风力涡轮机 (HAWT) 和垂直轴风力涡轮机 (VAWT)。VAWT 类型似乎比 HAWT 更古老 [4],但在风能行业,HAWT 类型更受欢迎,主要是因为产生的能量更多 [5]。随着人们对风能的兴趣日益高涨,VAWT 被认为是浮动海上风力涡轮机概念 [6] 和家庭用电中 HAWT 的潜在替代品。随着两种主要涡轮机类型 Darrieus 和 Savonius 垂直涡轮机的发明[4],人们对 VAWT 的兴趣日益增加。图 1 展示了 Darrieus 和 Savonius 风力涡轮机以及 Darrieus 涡轮机的一个特殊情况——H Darrieus 转子。
慢性粒细胞白血病 (CML) 的靶向疗法有效,但很少能治愈。患者通常需要无限期治疗,这为药物耐药性的产生提供了充足的时间。耐药性问题是 CML 导致死亡的主要原因之一,因此任何预防耐药性的方法都很重要。药物轮换,即定期在不同药物之间切换治疗,就是这样一种选择,理论上可以延缓耐药性的发生。药物轮换疗法的体外测试是将其应用于动物或人体试验的第一步。我们开发了一种在 CML 细胞系中测试药物轮换方案的方法,该方法基于用适量的抑制剂培养细胞,中间穿插清洗程序和药物交换。在 CML 特异性细胞系 KCL-22 中评估了伊马替尼和普纳替尼的药物轮换。药物轮换最初减少了 KCL-22 细胞的生长,但细胞最终适应了该方案。我们的结果表明,在药物轮换中,普纳替尼会暂时使细胞对伊马替尼敏感,但这种效果是短暂的,经过几个治疗周期后最终会消失。本文讨论了这一观察结果的可能解释。
背景:研究了椭圆形管热交换器中纳米流体(NF)流动的热流性能,并用两个旋转磁带装配和涡轮。在先前的研究中,使用NF作为使用NF作为使用NF作为使用NF的旋转扭曲磁带作为使用NF的工作流体的问题较少。方法:考虑到在管状热量器中采用传热改善方法的重要性,请参见此处检查的被动和抗热传热改善方法。作为一种新型的研究案例,使用了水2 o 3 nf的旋转磁带;进行了灵敏度分析,以揭示纳米颗粒(ϕ),磁带旋转速度和重新数量对NU数字,泵浦功率和功绩数字(FOM)的影响。将5000 wm-2的热通量应用于壁表面,并采用了两相混合方法进行模拟。在具有三种不同旋转速度的固定和旋转扭曲磁带的情况下,研究了热交换器的性能。结果表明,在所有情况下,增加了RE数量,ϕ和旋转速度将增加NU数量和泵送功率。ϕ的增加将NU数字提高了6.1% - 19.4%,泵送功率提高了59.2 - 280%。在较低的RE数字下增加NU数量的变化较低,并且在高RE数字下变为较高。ϕ增量对传热的影响正在增加,但在旋转磁带而不是固定磁带和普通管子的情况下以更高的倾斜速率发生。增加RE数量会减少FOM,同时增加ϕ会改善它。在旋转扭曲的磁带模式的情况下,FOM的值始终大于一个,对于固定模式,FOM的值始终低于0.9。显着的发现:FOM的最高值为1.57,是最高的旋转速度,最低的RE数和ϕ = 1%。实践意义和应用的潜在领域:在热交换器设备中有效传热的需求不断增加,因此需要采用热传递增强技术。通过数值研究了扭曲磁带的效果,它们的旋转以及NF S在热交换器中的应用。
