CRISPR-CAS基因组编辑技术正在快速开发,而新的分子工具(例如CRISPR核酸酶)正在定期使用。作为本研究主题的一部分,Bandyopadhyay等。提供了CAS12A的全面概述,CAS12A是一种CRISPR核酸酶,以前称为CPF1。在他们的评论文章中,作者涵盖了Cas12a的结构和机械方面,与Cas9相比,Cas9是最常用的CRISPR核酸酶。他们还强调了Cas12a的用途,目的是改善各种农作物中的农业重要特征。El-Mounadi等人提供了CAS9基因组编辑应用的概述。谁向读者介绍了Cas9活性的机制,其向植物细胞传递的方法(即转化技术),提供了使用CRISPR-CAS9改善作物性状的示例,并触摸了与基因组编辑相关的生物安全和调节方面。A number of countries (e.g., the USA, Brazil, Argentina, and Japan) have already exempted genome edited crops, which do not carry transgenic DNA or novel combination of genetic material (i.e., not similarly achievable through conventional breeding), from being regulated similarly to Genetically Modified Organisms (GMOs) as genetically engineered (GE) organisms ( Schmidt et al., 2020)。尽管上述国家通过了立法,允许在没有GE监管的情况下培养基因组编辑的农作物,但有关该问题的公众对话和政策发展正在发展。对于日本,Tabei等人。在2019年5月至2019年10月期间分析有关基因组编辑的食品及其标签的Twitter对话。分析表明,有54.5%的相关推文是与使用基因组编辑的农作物生产的食物相反的陈述,而只有7%是有利于它的陈述。其余38.5%的推文是被认为是中性的陈述。尽管由于Twitter用户之间的偏见,该分析不一定代表更广泛的日本社会,但该研究强调了关于基因组问题在日本和世界其他地区进行基因组问题的持续公开对话的重要性。
简介:多酚氧化酶 (PPO) 是一种双活性金属酶,可催化醌的产生。在植物中,PPO 活性可能有助于抗生物胁迫和次生代谢,但对食品生产商来说是不利的,因为它会导致产品在收获后加工过程中变色和风味特征发生变化。在小麦 (Triticum aestivum L.) 中,在碾磨过程中从谷物的糊粉层释放出的 PPO 会导致面粉、面团和最终产品变色,从而降低其价值。同源组 2 染色体上的 PPO1 和 PPO2 旁系同源基因的功能丧失突变导致小麦粒中的 PPO 活性降低。然而,有限的自然变异和这些基因的接近性使得通过重组选择极低 PPO 小麦品种变得复杂。本研究的目标是编辑 PPO1 和 PPO2 的所有副本,以大幅降低优良小麦品种中的 PPO 籽粒活性。
抽象的植物细胞经常遇到正常生长和发育的一部分,或响应诸如洪水等环境压力的一部分。近年来,我们对低氧反应基因表达的多层控制的理解已大大增加。在此更新中,我们对调节对低氧水平的反应的表观遗传,转录,翻译和翻译后机制进行了广泛的看法。我们强调了翻译后修饰(包括磷酸化),次级信使,转录级联反应以及来自线粒体和网状网状(ER)的逆行信号如何如何控制转录因子活性和低氧基因转录的控制。我们讨论了通过专注于主动和抑制性的染色质修饰和DNA甲基化的表观遗传机制,以调节对氧气供应减少的反应。我们还描述了当前对紧密调节mRNA翻译以协调缺氧下有效基因表达的共同和转录机制的知识。最后,我们在该领域提出了一系列杰出的问题,并考虑了如何对低氧触发的监管层次结构的分子起作用的新见解,这可能为开发洪水的作物铺平道路。
1960年代的绿色革命通过遗传改善,化学肥料,灌溉和机械化而实现了作物产量的显着增加。然而,在气候变化和地缘政治动荡的背景下,目前人口增长的轨迹预测,农业生产将不足以确保未来三十年的全球粮食安全。迫切需要对超出增量收益的农作物的改进。植物生物学近年来还通过开发和应用功能强大的技术(包括基因组测序),“ OMICS技术,精确的基因组编辑以及结构生物学和显微镜的步骤变化”,进行了一场革命。proteostasis-控制细胞蛋白质补体的集体过程,包括合成,修饰,定位和降解 - 是一个从这些进步中受益的领域。本期特刊介绍了这个充满活力的领域的最新研究,特别关注蛋白质降解。在当前文章中,我们强调了植物蛋白质症对农艺特征的多样化和广泛的贡献,提出了机遇和策略,以操纵蛋白质静态机制的不同元素以改善作物,并讨论将这些思想付诸实践所涉及的挑战。
专利•西奥多·罗斯(Theodore Roth)。“美国专利11,033,584个目标替代内源性T细胞受体”,加利福尼亚大学摄政王•西奥多·罗斯(Theodore Roth)。“美国专利9,308,163个治疗和预防中枢神经系统疾病和疾病的方法”,国立卫生研究院
公共报告委托官员决策委员会名称和委员会会议委员会委员会裁决的日期 - 2025年2月10日报告标题Rotherham Local Wildlife网站2025边界更新是否是一个关键决定,是否包含在远期计划中?No, but it has been included on the Forward Plan Assistant Director Approving Submission of the Report Simon Moss, Assistant Director, Planning, Regeneration & Transport Report Author(s) Rachel Lindsay, Planning Officer 01709 254746 or rachel.lindsay@rotherham.gov.uk Ward(s) Affected Aston & Todwick Ward Wales Ward Wath Ward Report Summary This report seeks approval of an update to the Local Wildlife罗瑟勒姆(Rotherham)的站点(LWS)系列,其中包括两个新的LW。这些站点边界将构成本地计划的环境证据的一部分,并用于确定相关计划申请。建议
胶质瘤是最常见的原发性中枢神经系统 (CNS) 肿瘤,也是儿童 (年龄 <15 岁)、青少年和青年 (AYA,年龄 15 – 39 岁) 和成人 (年龄 >39 岁) 癌症相关死亡的主要原因。分子病理学有助于增强对这些肿瘤的表征,揭示出一组异质性更强且越来越复杂的恶性肿瘤。最近的分子分析使人们更加了解各个年龄段普遍存在的常见基因组变异。2021 年世界卫生组织 (WHO) CNS 肿瘤分类第 5 版 (WHO CNS5) 提出了区分“儿童型”和“成人型”胶质瘤的命名法。AYA 中的胶质瘤谱包括“儿童样”和“成人样”肿瘤实体,但定义仍不明确。由于儿科和成人中心的临床管理分散,AYA 面临着医疗服务缺口、临床试验入组率较低以及其他心理社会和经济挑战等挑战。这要求重新考虑诊断和治疗方法,以改善各年龄段患者获得适当检测和潜在有益治疗的机会。
David A.威尔斯经济学最佳论文奖(哈佛)哈佛论文完成奖学金2016-2020国家科学基金会研究生研究奖学金2013 Shanbaum shanbaum本科生经济学卓越奖(UPENN)2012年Simon Kuznets奖学金奖学金(Empulical kinsoical)trincors:“ empulical kees nake tocalial take tocalial thains offars offorical thains offare thairs offare thairs:”AEA论文和诉讼程序2024,114:606-609。(非同行评审)[PDF] [Publisher的版本]“用零登录?一些问题和解决方案”(与Jiafeng Chen一起)[以前的标题为“ loglike?确定用零价值的结果定义的ATE是(任意)比例依赖性”。[PDF] [发布者的版本]“线性条件时刻不平等的推断”(与以赛亚·安德鲁斯和阿里尔·帕克斯一起)评论
古典学研究 人文社会科学 85 比较宗教学 人文社会科学 85 教育学 人文社会科学 87 英语 人文社会科学 85 普通文学与比较文学 人文社会科学 85 德语语言与文学 人文社会科学 85 希伯来语 人文社会科学 85 希伯来文学 人文社会科学 85 历史 人文社会科学 85 艺术史 人文社会科学 85 犹太历史 人文社会科学 85 伊斯兰与中东研究 人文社会科学 85 犹太研究 人文社会科学 85 犹太思想 人文社会科学 85 语言学 人文社会科学 85 人文多学科项目 人文社会科学 85 音乐学 人文社会科学 85 哲学 人文社会科学 87 罗曼史研究 人文社会科学 85 俄罗斯与斯拉夫研究 人文社会科学 85 西班牙与拉丁美洲研究人文社会科学 85 塔木德与哈拉卡 人文社会科学 85 戏剧研究 人文社会科学 85
1) 生理变化及应对措施:大约 500 天的长期月球任务给宇航员带来了多方面的生理挑战,包括部分重力暴露、电离辐射以及月球尘埃等环境因素。长时间暴露在低重力环境中会显著降低机械负荷,导致腰椎和股骨颈等负重区域的骨小梁损失高达 25% [1,2]。这种骨质流失与骨骼肌萎缩同时发生,主要影响下肢 [1,2]。这些肌肉骨骼变化会削弱身体机能和稳定性,从而通过减少静脉回流和加剧心脏萎缩来加剧心血管功能减退 [3,4]。虽然最初暴露于部分重力环境会诱发体液转移,从而暂时提高心输出量,但长期暴露会导致循环血容量减少和心室重塑,最终限制有氧能力,并在体力要求高的任务中增加疲劳感 [3,4]。其他结构性变化包括腰椎曲度减小和脊柱僵硬性增加,从而增加椎间盘损伤和背痛的风险,这可能会影响活动能力和舱外活动 (EVA) [1,3]。阻力训练、轴向负重服和下半身负压训练等对策对于减轻这些全身影响和维持功能至关重要 [1,3]。