通过植物育种提高农作物的产量是耗时且费力的,而新颖的等位基因组合的产生受染色体链接块和连锁拖拉的限制。减数分裂重组对于通过父母等位基因的重组创造新的遗传变异至关重要。同源染色体之间的遗传信息交换发生在跨界(CO)位点,但CO频率通常很低且分布不均。这种偏见在重组“冷”区域中引起了连锁 - 拖拉的问题,其中不希望的变化仍然与有用性状相关。在植物中,编程的减数分裂特异性DNA双链断裂,由SPO11复合物催化,启动重组途径,尽管只有〜5%导致COS的形成。为了研究Spo11-1在小麦减数分裂中的作用,作为操纵的前奏,我们使用CRISPR/CAS9在六链球菌的所有三种SPO11-1同种植物中生成编辑。显示植物在所有六个Spo11-1副本中都表现出色,无法接受染色体突触,缺乏COS且无菌。相比之下,在营养生长和生育方面,携带三种野生型同源物中任何一个副本的线条与未经编辑的植物都无法区分。然而,对编辑植物的细胞遗传学分析表明,同种异体产生COS和突触动力学的能力有所不同。此外,我们还表明,携带六个编辑的小麦突变体的转化是用TASPO11-1B基因编辑的SPO11-1副本,恢复突触,CO形成和生育能力,因此为这种具有重要意义的作物的重组提供了一种途径。
1960年代的绿色革命通过遗传改善,化学肥料,灌溉和机械化而实现了作物产量的显着增加。然而,在气候变化和地缘政治动荡的背景下,目前人口增长的轨迹预测,农业生产将不足以确保未来三十年的全球粮食安全。迫切需要对超出增量收益的农作物的改进。植物生物学近年来还通过开发和应用功能强大的技术(包括基因组测序),“ OMICS技术,精确的基因组编辑以及结构生物学和显微镜的步骤变化”,进行了一场革命。proteostasis-控制细胞蛋白质补体的集体过程,包括合成,修饰,定位和降解 - 是一个从这些进步中受益的领域。本期特刊介绍了这个充满活力的领域的最新研究,特别关注蛋白质降解。在当前文章中,我们强调了植物蛋白质症对农艺特征的多样化和广泛的贡献,提出了机遇和策略,以操纵蛋白质静态机制的不同元素以改善作物,并讨论将这些思想付诸实践所涉及的挑战。
Omega-3 长链多不饱和脂肪酸 (LC-PUFA)、二十碳五烯酸 (EPA;20:5 D 5,8,11,14,17) 和二十二碳六烯酸 (DHA;22:6 D 4,7,10,13,16,19) 现已被公认为健康均衡饮食的重要组成部分 (Napier 等人,2019 年;West 等人,2021 年)。供应 Omega-3 脂肪酸的野生捕捞渔业已达到可持续生产的最高水平;因此,满足日益增长的人口日益增长的需求的尝试依赖于替代鱼油来源 (Tocher 等人,2019 年)。亚麻荠 (Camelina sativa) 是一种油籽作物,含有高含量 ( > 35 % ) 的 α -亚麻酸 (ALA;18:3 D 9,12,15 ),并且已重建一条从 ALA 到亚麻荠 cv 中合成 EPA 和 DHA 的生物合成途径。 Celine 种子通过表达异源去饱和酶和延长酶基因,产生与海洋鱼油相当的 EPA 和 DHA 水平,以原型系 DHA2015.1(缩写为 DHA1)为例,积累了超过 25% 的 n-3 LC-PUFA(图 S1 和 S2(Petrie 等人,2014 年;Ruiz-Lopez 等人,2014 年)。英国、美国和加拿大的 DHA1 田间试验表明,omega-3 LC-PUFAs 特性在不同的地理位置和农业环境中是稳定的(Han 等人,2020 年)。同时,使用 DHA1 种子油的鲑鱼饲养试验和人类饮食研究均表明,这些转基因植物衍生油可以作为海洋衍生鱼油的有效替代品(Betancor 等人,2018 年;West 等人2021 年)。基于我们观察到的 ALA 是种子 omega-3 LC-PUFA 生产的内源性 C18 前体(Han 等人,2020 年),我们假设增加 ALA 库可以进一步增强 DHA1 亚麻荠中的 EPA/DHA 积累。DHA1 构建体已经含有 D 12 去饱和酶,可驱动脂肪酸流入 PUFA 生物合成(图 S1 和 S2)。然而,作为一种不太明显的方法,我们建议使用基因编辑的亚麻荠 fae1 突变体。亚麻荠 FAE1 与内源性 FAD2 D 12 去饱和酶(其
随着越来越多的研究将牲畜农业与更快的全球变暖,更高的健康成本和更高的土地要求联系起来,通常建议将基于植物的饮食的急剧转变为有效的全能解决方案。隐含地,这一论点是基于以下假设:当前分配给动物生产系统的资源的重新分配将自动导致对人类食用作物的有效培养,而没有负面的环境,健康或社会经济后果。实际上,这种假设的有效性值得仔细检查,因为农场采用新的农业系统的能力是多方面的,并且有背景。通过对文献的跨学科综述,我们在这里讨论了意外后果的例子,这些后果可能是由于草原转化为可耕种的生产,包括对产量稳定性,生物多样性,土壤生育能力以及其他可能产生的不利影响。我们认为,这些问题中的几乎没有被认为是当前粮食安全辩论的一部分,并呼吁对供应方约束进行仔细检查。
Rothamsted Research 是一家担保有限公司,注册办事处:如上所述。在英格兰注册编号 2393175。注册慈善机构编号 802038。增值税编号 197 4201 51。由 John Bennet Lawes 于 1843 年创立。
摘要:小麦是一种主食,在全球范围内消耗是淀粉和蛋白质的主要来源。近年来,全球小麦的摄入量有所增加,总体而言,小麦被认为是健康食品,尤其是在用全谷物制成产品时。然而,通常通过烘烤和/或烤面包在食用之前几乎总是对小麦进行处理,这可能导致形成有毒加工污染物的形成,包括丙烯酰胺,5-羟基甲基甲基膜(HMF)(HMF)和多环状芳族芳族芳族氢碳酸盐(PAHS)。丙烯酰胺主要由自由(可溶性,非蛋白质)天冬酰胺形成,并在Maillard反应中减少糖(葡萄糖,果糖和麦芽糖),并分类为2A组致癌物(可能与人类的致癌物)。它还具有高剂量的神经毒性和发育作用。HMF也是在Maillard反应中产生的,但也可以通过果糖或焦糖化的脱水来形成。经常在面包,饼干,饼干和蛋糕中发现。其分子结构指向遗传毒性和致癌风险。pah是一大类化合物,其中许多是遗传毒性,诱变,致伤性和致癌性。它们主要是由于有机物的不完全燃烧而在油炸,烘烤和烧烤期间形成的。可以随着食谱和加工参数的变化以及有效的质量控制措施而降低这些加工污染物的生产。但是,在丙烯酰胺和HMF的情况下,它们的形成也高度取决于谷物中前体的浓度。在这里,我们回顾了这些污染物的综合,影响其生产的因素以及可以采取的缓解措施以减少小麦产品中的形成,重点是遗传学和农学的作用。我们还审查了全球食品安全部门通过的风险管理措施。
1 植物科学系,罗瑟姆斯特德研究中心,哈彭登 AL5 2JQ,英国 § 现地址:约翰·英纳斯中心,诺维奇研究园,诺维奇 NR4 7UH,英国 *通讯地址:vladimir.nekrasov@rothamsted.ac.uk 电话:+44 (0)1582 938 292 FH ORCID:0000-0002-0215-3209;VN ORCID:0000-0001-9386-1683 关键词:CRISPR、Cas9、植物、基因组编辑、Golden Gate、MoClo
抽象的植物细胞经常遇到正常生长和发育的一部分,或响应诸如洪水等环境压力的一部分。近年来,我们对低氧反应基因表达的多层控制的理解已大大增加。在此更新中,我们对调节对低氧水平的反应的表观遗传,转录,翻译和翻译后机制进行了广泛的看法。我们强调了翻译后修饰(包括磷酸化),次级信使,转录级联反应以及来自线粒体和网状网状(ER)的逆行信号如何如何控制转录因子活性和低氧基因转录的控制。我们讨论了通过专注于主动和抑制性的染色质修饰和DNA甲基化的表观遗传机制,以调节对氧气供应减少的反应。我们还描述了当前对紧密调节mRNA翻译以协调缺氧下有效基因表达的共同和转录机制的知识。最后,我们在该领域提出了一系列杰出的问题,并考虑了如何对低氧触发的监管层次结构的分子起作用的新见解,这可能为开发洪水的作物铺平道路。
本文已被接受以进行出版和进行完整的同行评审,但并未通过复制,排版,分页和校对过程,这可能会导致此版本与记录版本之间的差异。请引用本文为doi:10.1111/pbi.13573