在高收入国家中,公民对牛肉消费的态度发生了变化,导致其消费量下降。COVID-19大流行可能影响了公民对病房消费的态度和行为。这项研究旨在调查智利公民对大流行最初18个月中牛肉消费的态度。的社会人口统计学特征和对牛肉消费的态度。公民对牛肉饮食和生产的态度在开始时与19次大流行爆发后一年以上之间没有变化。与动物产量,女性,年轻和非肉类消费者无关的参与者表现出对牛肉消费和生产的负面态度。一半的参与者同意牛肉对环境有害,但只有30%的人同意牛肉对人类健康不利。一半的参与者减少了牛肉的消费量,而48%的参与者表示未来减少牛肉消费的意图,这主要是由与动物福利,环境和人类健康有关的担忧。大多数颗粒ipant(80%)认为他们的同胞应减少牛肉消费,但只有50%的人认为这会发生这种情况。我们得出结论,智利消费者对牛肉饮食的态度并没有改变,这是由于19号大流行病的爆发。由于环境,动物和健康问题,参与者对单独和社会的牛肉消费表示强烈关注,并且认为智利人应在将来减少牛肉的消费量,但对这种情况的信心很低。
1名Muneta Grace Kangara医生。 土壤科学家。 Rothamsted Research West Common Harpenden AL5 2JQ英国。 电话:01582938516。 电子邮件:grace.kangara@rothamsted.ac.uk。 orcid ID:https://orcid.org/0000-0002-3784-4915 2医生Chenjerai。 Muwaniki。 讲师:罗伯特·穆加贝(Robert Mugabe)遗产与教育学校的成人和继续教育。 伟大的津巴布韦大学,津巴布韦马斯文诺市P/BAG 2135。 来访讲师:终身学习和社区发展。 博茨瓦纳大学,加博隆,博茨瓦纳塔尔:+263 775369343。 电子邮件cmuwaniki@gzu.ac.zw。 orcid ID:https://orcid.org/0000-0002-0476-0168 3医生Shephard Siziba。 高级讲师,农业和社会经济学家。 津巴布韦农业综合企业发展与经济学系P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263775780424;发送电子邮件至s.siziba@hotmail.com。 orcid ID:https://orcid.org/0000-0002-6861-0230。 4塔夫雷伊·chamboko医生。 农业经济学家和高级讲师。 津巴布韦农业发展与经济学系P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263 772349599;发送电子邮件至tafireyi2000@gmail.com。 orcid ID:https://orcid.org/0000-0002-5968-369x。 5佛罗伦萨·姆坦巴韦教授。 研究与创新执行董事。 津巴布韦大学P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263 242 303211 Ext 11242/11158;发送电子邮件至fmtambanengwe@admin.uz.ac.zw。1名Muneta Grace Kangara医生。土壤科学家。Rothamsted Research West Common Harpenden AL5 2JQ英国。电话:01582938516。电子邮件:grace.kangara@rothamsted.ac.uk。orcid ID:https://orcid.org/0000-0002-3784-4915 2医生Chenjerai。Muwaniki。 讲师:罗伯特·穆加贝(Robert Mugabe)遗产与教育学校的成人和继续教育。 伟大的津巴布韦大学,津巴布韦马斯文诺市P/BAG 2135。 来访讲师:终身学习和社区发展。 博茨瓦纳大学,加博隆,博茨瓦纳塔尔:+263 775369343。 电子邮件cmuwaniki@gzu.ac.zw。 orcid ID:https://orcid.org/0000-0002-0476-0168 3医生Shephard Siziba。 高级讲师,农业和社会经济学家。 津巴布韦农业综合企业发展与经济学系P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263775780424;发送电子邮件至s.siziba@hotmail.com。 orcid ID:https://orcid.org/0000-0002-6861-0230。 4塔夫雷伊·chamboko医生。 农业经济学家和高级讲师。 津巴布韦农业发展与经济学系P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263 772349599;发送电子邮件至tafireyi2000@gmail.com。 orcid ID:https://orcid.org/0000-0002-5968-369x。 5佛罗伦萨·姆坦巴韦教授。 研究与创新执行董事。 津巴布韦大学P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263 242 303211 Ext 11242/11158;发送电子邮件至fmtambanengwe@admin.uz.ac.zw。Muwaniki。讲师:罗伯特·穆加贝(Robert Mugabe)遗产与教育学校的成人和继续教育。伟大的津巴布韦大学,津巴布韦马斯文诺市P/BAG 2135。来访讲师:终身学习和社区发展。博茨瓦纳大学,加博隆,博茨瓦纳塔尔:+263 775369343。电子邮件cmuwaniki@gzu.ac.zw。orcid ID:https://orcid.org/0000-0002-0476-0168 3医生Shephard Siziba。高级讲师,农业和社会经济学家。津巴布韦农业综合企业发展与经济学系P.O.盒子MP167,山巴布尔山山,津巴布韦。电话:+263775780424;发送电子邮件至s.siziba@hotmail.com。orcid ID:https://orcid.org/0000-0002-6861-0230。4塔夫雷伊·chamboko医生。农业经济学家和高级讲师。津巴布韦农业发展与经济学系P.O.盒子MP167,山巴布尔山山,津巴布韦。电话:+263 772349599;发送电子邮件至tafireyi2000@gmail.com。orcid ID:https://orcid.org/0000-0002-5968-369x。5佛罗伦萨·姆坦巴韦教授。研究与创新执行董事。津巴布韦大学P.O.盒子MP167,山巴布尔山山,津巴布韦。电话:+263 242 303211 Ext 11242/11158;发送电子邮件至fmtambanengwe@admin.uz.ac.zw。orcid ID:http://orcid.org/0000-0002-8250-9075 6教授Volker Wedekind。教育学院的负责人。教育学院,纽约大学诺丁汉大学,诺丁汉,NG8 1BB,英国。电话:0115 951 6529电子邮件:volker.wedekind@nottingham.ac.uk。orcid ID:https://orcid.org/0000-0002-7620-3846。
CRISPR-CAS基因组编辑技术正在快速开发,而新的分子工具(例如CRISPR核酸酶)正在定期使用。作为本研究主题的一部分,Bandyopadhyay等。提供了CAS12A的全面概述,CAS12A是一种CRISPR核酸酶,以前称为CPF1。在他们的评论文章中,作者涵盖了Cas12a的结构和机械方面,与Cas9相比,Cas9是最常用的CRISPR核酸酶。他们还强调了Cas12a的用途,目的是改善各种农作物中的农业重要特征。El-Mounadi等人提供了CAS9基因组编辑应用的概述。谁向读者介绍了Cas9活性的机制,其向植物细胞传递的方法(即转化技术),提供了使用CRISPR-CAS9改善作物性状的示例,并触摸了与基因组编辑相关的生物安全和调节方面。A number of countries (e.g., the USA, Brazil, Argentina, and Japan) have already exempted genome edited crops, which do not carry transgenic DNA or novel combination of genetic material (i.e., not similarly achievable through conventional breeding), from being regulated similarly to Genetically Modified Organisms (GMOs) as genetically engineered (GE) organisms ( Schmidt et al., 2020)。尽管上述国家通过了立法,允许在没有GE监管的情况下培养基因组编辑的农作物,但有关该问题的公众对话和政策发展正在发展。对于日本,Tabei等人。在2019年5月至2019年10月期间分析有关基因组编辑的食品及其标签的Twitter对话。分析表明,有54.5%的相关推文是与使用基因组编辑的农作物生产的食物相反的陈述,而只有7%是有利于它的陈述。其余38.5%的推文是被认为是中性的陈述。尽管由于Twitter用户之间的偏见,该分析不一定代表更广泛的日本社会,但该研究强调了关于基因组问题在日本和世界其他地区进行基因组问题的持续公开对话的重要性。
有效使用它们的能力(Beckie,2020)。因此,要解决问题并制定可持续有效的杂草管理策略,我们必须了解除草剂耐药性的产生方式。我们知道,杂草可以通过更改除草剂(靶位部位耐药性或TSR)靶向的蛋白质,或避免,修改或排毒除草剂本身(非target位点耐药性或NTSR)来进化除草剂(Gaines等人。2020)。也很明显,这两种机制不是相互排斥的,许多种群都表现出两种类型的抗药性(Comont等人2020)。对于几种杂草物种,我们对TSR具有良好的分子水平理解。研究TSR是被损坏的东西,除草剂的功能被设计为中断的蛋白质是已知的。已经确定了目标蛋白质中突变位点的位置,这些变化的频率以及产生的变化如何改变除草剂和靶标之间的相互作用(在Gaines等人中进行了审查。2020)。这些研究使我们对为什么除草剂不再抑制蛋白质功能有分子级的理解。,但TSR机制并不总是完全解释所有杂草如何生存。这强调了NTSR机械主义和数据的重要性,这表明NTSR非常广泛(Powles&Yu,2010年综述)。ntsr涵盖了允许植物在蛋白质靶标的变化以外的所有方法:包括摄取除草剂分子的摄取,转运和排毒。2018)。为了使未来的杂草管理策略有最佳的工作机会,他们必须考虑NTSR,特别是因为NTSR可以从不同的作用方式赋予对除草剂的抵抗,从而扩展到尚未发明的除草剂。因此,要确定基本的修改,必须考虑所有这些过程中涉及的所有蛋白质。研究人员已经通过各种途径进行了“针中的HAYSTACK”搜索,包括比较对除草剂敏感的蛋白质组和/或转录组与耐除草剂的植物。这种整体方法与损坏的系统进行了比较,在识别可能支持NTSR的潜在基因方面效果很好。但是这些清单很长,很明显,所有耐除草剂群体都不具有单一的通用“分子填充物”(Tétard-Jones等人。因此,这些方法仅揭示了基因型和表型之间的相关性,但不能建立因果关系。如果除草剂耐药性是一台可能导致问题的潜在零件列表的破碎机器,我们将以两种方式处理此列表:要么替换每个零件以查看是否解决了问题,要么在工作机器中打破同一零件,以查看问题是否可以重复。
Omega-3 长链多不饱和脂肪酸 (LC-PUFA)、二十碳五烯酸 (EPA;20:5 D 5,8,11,14,17) 和二十二碳六烯酸 (DHA;22:6 D 4,7,10,13,16,19) 现已被公认为健康均衡饮食的重要组成部分 (Napier 等人,2019 年;West 等人,2021 年)。供应 Omega-3 脂肪酸的野生捕捞渔业已达到可持续生产的最高水平;因此,满足日益增长的人口日益增长的需求的尝试依赖于替代鱼油来源 (Tocher 等人,2019 年)。亚麻荠 (Camelina sativa) 是一种油籽作物,含有高含量 ( > 35 % ) 的 α -亚麻酸 (ALA;18:3 D 9,12,15 ),并且已重建一条从 ALA 到亚麻荠 cv 中合成 EPA 和 DHA 的生物合成途径。 Celine 种子通过表达异源去饱和酶和延长酶基因,产生与海洋鱼油相当的 EPA 和 DHA 水平,以原型系 DHA2015.1(缩写为 DHA1)为例,积累了超过 25% 的 n-3 LC-PUFA(图 S1 和 S2(Petrie 等人,2014 年;Ruiz-Lopez 等人,2014 年)。英国、美国和加拿大的 DHA1 田间试验表明,omega-3 LC-PUFAs 特性在不同的地理位置和农业环境中是稳定的(Han 等人,2020 年)。同时,使用 DHA1 种子油的鲑鱼饲养试验和人类饮食研究均表明,这些转基因植物衍生油可以作为海洋衍生鱼油的有效替代品(Betancor 等人,2018 年;West 等人2021 年)。基于我们观察到的 ALA 是种子 omega-3 LC-PUFA 生产的内源性 C18 前体(Han 等人,2020 年),我们假设增加 ALA 库可以进一步增强 DHA1 亚麻荠中的 EPA/DHA 积累。DHA1 构建体已经含有 D 12 去饱和酶,可驱动脂肪酸流入 PUFA 生物合成(图 S1 和 S2)。然而,作为一种不太明显的方法,我们建议使用基因编辑的亚麻荠 fae1 突变体。亚麻荠 FAE1 与内源性 FAD2 D 12 去饱和酶(其
本文已被接受以进行出版和进行完整的同行评审,但并未通过复制,排版,分页和校对过程,这可能会导致此版本与记录版本之间的差异。请引用本文为doi:10.1111/pbi.13573
Martius,C。,Zlinszky,A.将地球观测与高通量生物多样性数据联系起来。自然生态与进化,1(7),1-9。https://doi。org/10. 1038/s4155 9-017-0176 Callahan,B.J.,McMurdie,P.J。,&Holmes,S。P.(2017)。精确序列
Rothamsted Research是一家公司限制保证注册办公室的公司:如上所述。在英格兰注册2393175。注册慈善机构802038。增值税编号197 4201 51。由约翰·本内特·劳斯(John Bennet Lawes)于1843年创立。
BBSRC 创新资助计划的推出标志着英国在促进英国各地研究和创新集群之间更深层次联系方面迈出了重要一步。该计划由 BBSRC 支持,已被证明在为我们的初创公司提供资金支持方面发挥了重要作用。这种支持使这些公司能够利用 Rothamsted Research 同事的丰富知识和经验,并与现场创新企业合作。通过这种合作关系,他们可以有效地试行、测试或试用他们的新概念,加速创新产品和服务进入市场的进程。