国际能源署称,水泥生产占工业二氧化碳排放量的三分之一,占全球所有人为二氧化碳排放量的 8%。尽管没有人会否认水泥对全球经济发展至关重要,但目前的制造方法产生的排放如果置之不理,将使 1.5˚C 的气候目标遥不可及,给地球带来灾难性后果。不过,近期的技术创新让我们有充分理由对水泥行业的未来感到乐观。得益于创新的 RotoDynamic 技术,无化石燃料水泥生产已指日可待。RotoDynamic 技术历经十年研发,仅使用电力就能产生工业过程所需的高温(高达 1700˚C)。如果在所有潜在的工业应用中大规模使用,这项突破性技术可以减少超过 20 亿吨的二氧化碳排放量。对于水泥制造商来说,这意味着目前用于加热水泥窑的化石燃料可以逐步淘汰,转而使用 100% 的电力加热器,这种加热器结构紧凑、效率更高、更可靠,从而大大加快了亟需削减的二氧化碳排放量。在 ABB 的开发支持、与牛津大学和剑桥大学的学术合作以及与各行业领导者的合作下,RotoDynamic Technology 致力于为世界提供可持续的水泥。涡轮机械:RotoDynamic Technology 背后的科学 RotoDynamic Technology 的应用很新颖,但其底层设计实际上是反向的燃气轮机。与传统涡轮机不同,RotoDynamic Technology 不是加热气体来旋转涡轮叶片并发电,而是通过加热气体来旋转涡轮叶片并发电。
方法旨在通过实验和有限元分析 (FEA) 研究确定旋转圆盘的纤维增强复合材料的机械行为。首先,对两个不同系列进行 FEA 分析,载荷条件为旋转速度 600 RPM,外部摩擦力 10 N。其中,利用 FEA 工具对七种不同的复合材料样品进行结构特性分析,例如环氧-碳-UD-预浸料-SiC、环氧-碳-UD-湿法-SiC、环氧-碳-编织-预浸料-SiC、环氧-碳-编织-湿法-SiC、环氧-E-玻璃-UD-SiC、环氧-E-玻璃-湿法-SiC 和环氧-S-玻璃-UD-SiC。除这些材料外,还通过 FEA 分析了四种基础材料,以在相同载荷条件下进行比较。其次,进行了实验研究,以调查带有碳化硅 (SiC) 的 FRP 实心盘式制动器转子的适用性,为此,准备了基于碳编织基陶瓷复合材料的 ASTM 标准样品销盘装置。还在两种方法的位移之间执行了验证。最后,这项工作证实了碳纤维陶瓷基复合材料是抵抗旋转动力载荷的良好材料,因此这项工作还强烈建议在制造飞机和汽车盘式制动器等旋转部件时实施 CCMC。
用于压缩空气储能的多级径向流泵涡轮机:实验分析和建模 Egoï Ortego 1,2 , Antoine Dazin 1 , Frédéric Colas 3 , Olivier Roussette 1 , Olivier Coutier Delgosha 1,4 , Guy Caignaert 1 1 Univ.里尔、法国国家科学研究院、ONERA、巴黎高科艺术与工学院、里尔中央理工学院、UMR 9014-LMFL - 里尔流体力学实验室 - Kampé de Fériet,F-59000,里尔,法国。 2 MINES ParisTech-PSL 研究型大学-CES,法国帕莱索 3 Univ.里尔,巴黎高工学院,里尔中央理工学院,HEI,EA 2697 - L2EP - 电工技术与电力电子实验室,F-59000 里尔,法国 4 Kevin T. Crofton 弗吉尼亚理工大学航空航天与海洋工程系,弗吉尼亚州布莱克斯堡 24060,美国 摘要 近年来,能源格局演变引发了网络管理问题,例如可再生生产来源的日益整合,这些变化刺激了与电网相连的存储系统的不断发展。在现有的存储技术中,水气系统似乎提供了一种清洁、廉价的能源存储解决方案。本研究分析了使用旋转动力可逆泵/涡轮的闭式循环空气-水直接接触积累系统。使用独特的能量转换机器和易于回收的材料可以实现经济高效、环保且使用寿命长的存储技术。本文重点介绍该系统在实验室环境中的实验实现与分析,以及其多物理动态行为的建模。为了应对系统多变的运行条件,成功测试了两种不同的液压机实时控制策略。最后讨论了整体系统效率。效率控制策略实现了31%的往返效率,功率控制策略分别使充电和放电模式下的交换功率精度达到5%和23%。多物理动态模型导致涡轮机模式加速度预测的误差为 4%,这表明这种建模方法对于此类瞬态系统具有重要意义。术语符号希腊符号和运算符定容比热容 (J/(kg.K))Δ差
属于 QS 世界大学排名的机械、航空和制造工程类别,米兰理工大学目前在该类别中排名世界第 7 位(2023 年 QS 学科排名)。我们的项目培养了 230 多名博士生,其中 29% 是国际学生。女性占 18%。该项目每年接受国家级机构评估(Accreditamento ANVUR);2022 年,我们获得了该机构的全面认可。博士项目由协调员和学院委员会管理。协调员担任学院委员会主席,监督年度教育计划的准备工作,并组织博士课程的一般教育活动(见附件 A1)。学院委员会负责教育计划以及与博士课程相关的教学和行政活动(见附件 A2)。该项目涵盖许多不同的学科,尤其致力于创新和实验活动。它依赖于跨学科和综合的高级教育课程的发展,专注于从构思到实现的综合科学提案;我们研究方向的核心是在国际和国家层面确定的社会趋势:可持续交通、健康和福祉、清洁能源、创新和创造就业机会。我们还与国内外最知名的研究团体和实验室保持着持续的合作。机械工程博士课程涵盖了许多不同的学科,特别致力于六个主要研究方向的创新和实验活动:机械系统和车辆的动力学和振动:该研究方向分为五个研究领域,即机电一体化和机器人技术、转子动力学、风工程、道路车辆动力学、铁路动力学。它的特点是线性和非线性动态系统的建模、稳定性和自激振动、机械系统的主动控制、状态监测和诊断。测量和实验技术:机械和热测量 (MTM) 小组在开发和鉴定新测量技术以及在创新领域定制和应用众所周知的测量原理方面有着共同的背景。MTM 主要研究重点是测量系统和程序的设计、开发和计量特性,以及声音/振动、结构健康监测、视觉、空间和康复测量中创新技术的实施。机械和车辆设计:该研究方向涉及先进的设计方法和机械部件的适用性。先进的设计方法是指多轴低和高周疲劳寿命预测标准的定义,以及裂纹元件结构完整性的评估、聚合物基复合材料(短纤维和长纤维)等先进材料的疲劳寿命标准的预测、预测喷丸对机械部件疲劳强度影响的方法的定义。涉及齿轮、压力容器和直升机部件。车辆系统的优化设计和测试在理论研究和地面车辆实验研究之间产生了协同作用。