摘要NASA Ingenuity直升机的成功承诺,未来对火星的探索将包括与流浪者和着陆器一致的Aerobots。但是,由于其小而基本的设计,Ingenuity缺乏远程耐力和科学有效载荷能力。在一系列优化的火星无人机概念开发中,我们在本文中介绍了基于旋转EVTOL设计配置的初始尺寸,基于对悬停和垂直攀爬的执行参数分析,使用简化的Rotorcraft Momentum理论,用于一组更具挑战性的Martian Aerobot Mission,并符合最大的SpaceCraft Airoshell Limit lim Limit spacececraft Airsherlaft Airoshell Limit limimimep。发现串联转子构型是最有效的配置,而传统的单个主转子配置具有小直径,表现出最差的性能。
比率、输出级的双水平传动装置、弹性负载共享装置和消除附件驱动器。对所选的分流路径配置进行了详细的设计研究,并绘制了 1/2 尺寸齿轮箱的图纸,该齿轮箱由第二级直齿轮啮合的单发动机路径和输出级双螺旋齿轮啮合组成。然后对 1/2 尺寸齿轮箱进行了制造和测试。在
AC 27-1B 和 AC 29-2C 中的指导不包含姿态系统的安装性能标准。AC 20-181 和 RTCA/DO-334 确实定义了不使用万向节传感器的捷联式 AHRS 的最低操作性能标准。但是,这些标准在 AC 27-1B 或 29-2C 中没有引用。不使用万向节传感器的捷联式 AHRS 系统的使用增加,其中可能包括校正对数,从固定翼过渡到旋翼机设计。这种转变给旋翼机安装带来了一些性能挑战。其中一些设计使用了固态加速度计(每个飞行轴一个),难以区分旋翼机运动和安装平台的正常振动频谱。此外,所使用的某些对数依赖于参数,在旋翼机低速环境中,这些参数会导致不可接受的误差。其他垂直起降飞机(如倾转旋翼机)也可能存在类似问题。DO-334 还定义了与传统旋翼机相关的可接受机动;但是,这可能不涵盖其他类型 VLOAL 的所有适当飞行测试参数,即:倾转旋翼机转换模式。在这些情况下,可能需要一份问题文件来定义额外的飞行测试机动。DO-334 表 2-1 定义了安装姿态性能的可接受性能标准,针对表 3-1 中定义的机动的动态条件类别 A5。除了表 2-1 中定义的机动之外,倾转旋翼机可能还需要其他机动。对于旋翼机/倾转旋翼机安装,DO-334 附录 A - 使用模拟验证设备性能是不可接受的。
旋翼飞机为探索外星环境提供了独特的功能。与诸如漫游者之类的勘探工具相比,旋翼船能够越来越快地到达感兴趣的目的地。此外,它们只需要合适的起飞和降落区,并且可以飞越由于障碍物或粗糙地形而可能无法遍历流浪者可能无法穿越的地形。这些优势激发了火星的创造任务,该任务涉及第一个飞行火星的旋翼飞机[1]。这项任务的成功继续激励未来的任务,例如可能使用直升机来返回火星样本[2]。设计一种在火星氛围环境中运行的首个旋翼飞机,需要进行设计,开发和操作的独特工具。在开发的工具中是Helicat-darts(简单地称为简洁的Helicat),用于旋转动力学建模和仿真。此仿真工具是指导,导航和控制(GNC)算法和软件开发的测试床,并作为分析飞行性能和动态的工具。Helicat在Ingenuity任务的整个生命周期中都使用,包括以下内容:
飞机或旋翼机燃气涡轮发动机某些关键子系统的电气化为下一代航空发动机提供了许多宝贵的优势,如减轻重量、降低能耗、提高子系统和整个推进系统的效率、加快响应速度、更快更容易维修、比液压和气动系统可靠性更高、减少油耗、提高有效载荷能力、降低总生命周期成本、提高可维护性、发动机维护和操作更清洁、更好地分配机载资源、为维护和客户提供实时数据、提高健康监测能力等。发动机子系统的电气化还可以开发新的创新型飞机和发动机配置,例如,去除笨重而复杂的(发动机和/或飞机)附件驱动变速箱(ADG)或为 IGV、推力反向器门或任何其他可变几何部件引入和使用更多的 EMA(机电执行器)。在发动机和子系统(如润滑系统)中集成更多更智能的传感器是另一个明显的优势(例如油渣监测传感器或油箱液位传感器)。还将讨论更多电气子系统的集成,并了解与电源和热管理相关的固有风险(参见 AVT-RTG-333“将推进、电源和热子系统模型集成到飞行器概念设计中”)。因此,建议对涡扇和涡轴子系统电气化的当前趋势进行分析,并组织关于此主题的 RSM,目的是将 AVT 小组定位在此技术发展的前沿。背景
5.4 降阶模型和基于物理的修正 5-6 5.4.1 方法论 5-6 5.4.1.1 旋翼诱导流入动力学 5-6 5.4.1.2 旋翼间干扰 5-8 5.4.1.3 气动干扰 5-9 5.4.1.4 机身气动 5-9 5.4.1.5 带旋翼超前-滞后的发动机/传动系统动力学 5-9 动力学 5.4.1.6 传感器和斜盘执行器动力学 5-10 5.4.2 应用 5-10 5.4.3 优势和局限性 5-10 5.5 基于物理的模拟的模型参数调整 5-11 5.5.1 方法论 5-11 5.5.1.1 D 级飞行员训练的参数调整 5-11模拟器 5.5.1.2 工程研究的参数调整 5-11 模拟 5.5.2 应用 5-12 5.5.3 优点和局限性 5-12 5.6 关键模拟常数的参数识别 5-12 5.6.1 方法 5-12 5.6.2 应用 5-12 5.6.3 优点和局限性 5-12 5.7 从点 ID 模型和修剪数据进行拼接模拟 5-13 5.7.1 方法 5-13 5.7.2 应用 5-15 5.7.3 优点和局限性 5-15 5.8 参考文献 5-16
本论文中表达的观点为作者的观点,不反映美国空军、国防部或美国政府的官方政策或立场。本材料被宣布为美国政府的作品,不受美国版权保护。
减去乘客座位,旋翼机可以在地面附近安全飞行的最大重量、高度和温度,最大风速根据 CS 29.143(c) 确定,并且可能包括其他已证实的风速和方位角。操作范围必须在旋翼机飞行手册的限制部分中说明。
本文档包含指向包含欧盟法律的页面和/或 EASA 网站页面的链接。您不应点击这些链接,因为这些目标页面不会包含有关您的权利和义务的最新和准确描述。