减去乘客座位,旋翼机可以在地面附近安全飞行的最大重量、高度和温度,最大风速根据 CS 29.143(c) 确定,并且可能包括其他已证实的风速和方位角。操作范围必须在旋翼机飞行手册的限制部分中说明。
— AMC 27 通则 已修订(第 15 条与 AB 协商) — AMC 27.45 已创建(第 15 条与 AB 协商) — AMC 27.865 已修订(第 15 条与 AB 协商) — CS 27.865 中的 AMC 1 号已修订(第 15 条与 AB 协商) — CS 27.865 中的 AMC 2 号已修订(第 15 条与 AB 协商) — CS 27.865 中的 AMC 3 号已修订(第 15 条与 AB 协商) — AMC MG 1 已创建(第 15 条与 AB 协商) — AMC MG 6 已修订(第 15 条与 AB 协商) — AMC MG 16 已创建(第 15 条与 AB 协商) — AMC MG 17 已创建(第 15 条与AB)— AMC MG 21 创建(第 15 条与 AB 磋商)— AMC MG 23 创建(第 15 条与 AB 磋商)
本文档包含指向包含欧盟法律的页面和/或 EASA 网站页面的链接。您不应点击这些链接,因为这些目标页面不会包含有关您的权利和义务的最新和准确描述。
5.1.3 – 坚固性 ...................................................................................................................................................................................... 17
本文将回顾先进旋翼机构型(包括复合直升机构型和倾转旋翼飞行器)数学建模的发展和应用。数学模型是飞行控制系统设计的基础,也是评估直升机飞行和操纵品质的重要工具。由于直升机是一个多体系统,其数学建模应考虑运动、惯性、结构和气动之间的耦合作用以及非定常和非线性特性,给出各部分的物理原理和数学表达。因此,直升机的数学建模是一个分析和综合不同假设和子系统模型的过程。此外,先进的直升机构型在气动干扰、桨叶运动特性和机动评估方面对直升机数学建模提出了更高的要求。本文将阐述直升机建模的关键问题,特别是先进旋翼机构型的建模。本文重点研究旋翼气动建模以及旋翼、机身和其他部件之间的气动相互作用。综合建模方法和机动性研究也是本文的重点。本文还对未来直升机飞行动力学建模的研究提出了建议。
摘要NASA Ingenuity直升机的成功承诺,未来对火星的探索将包括与流浪者和着陆器一致的Aerobots。但是,由于其小而基本的设计,Ingenuity缺乏远程耐力和科学有效载荷能力。在一系列优化的火星无人机概念开发中,我们在本文中介绍了基于旋转EVTOL设计配置的初始尺寸,基于对悬停和垂直攀爬的执行参数分析,使用简化的Rotorcraft Momentum理论,用于一组更具挑战性的Martian Aerobot Mission,并符合最大的SpaceCraft Airoshell Limit lim Limit spacececraft Airsherlaft Airoshell Limit limimimep。发现串联转子构型是最有效的配置,而传统的单个主转子配置具有小直径,表现出最差的性能。
旋翼飞机为探索外星环境提供了独特的功能。与诸如漫游者之类的勘探工具相比,旋翼船能够越来越快地到达感兴趣的目的地。此外,它们只需要合适的起飞和降落区,并且可以飞越由于障碍物或粗糙地形而可能无法遍历流浪者可能无法穿越的地形。这些优势激发了火星的创造任务,该任务涉及第一个飞行火星的旋翼飞机[1]。这项任务的成功继续激励未来的任务,例如可能使用直升机来返回火星样本[2]。设计一种在火星氛围环境中运行的首个旋翼飞机,需要进行设计,开发和操作的独特工具。在开发的工具中是Helicat-darts(简单地称为简洁的Helicat),用于旋转动力学建模和仿真。此仿真工具是指导,导航和控制(GNC)算法和软件开发的测试床,并作为分析飞行性能和动态的工具。Helicat在Ingenuity任务的整个生命周期中都使用,包括以下内容:
本论文中表达的观点为作者的观点,不反映美国空军、国防部或美国政府的官方政策或立场。本材料被宣布为美国政府的作品,不受美国版权保护。
摘要 本文探讨了飞行模拟器的保真度要求,以改进训练并解决与旋翼机飞行中失控 (LOC-I) 相关的问题。为了说明背景,本文介绍了旋翼机事故统计趋势。数据显示,尽管最近采取了安全举措,但 LOC-I 旋翼机事故已被确定为事故率的一个重要且不断增长的因素。20 世纪 90 年代末,固定翼商用飞机界面临着与失控预防和恢复相关的类似情况,并通过协调的国际努力,制定了有针对性的培训计划以降低事故率。本文介绍了从固定翼计划中吸取的经验教训,以强调如何需要改进旋翼机建模和仿真工具,通过更高质量的基于模拟器的培训计划来减少旋翼机事故。本文回顾了相关的飞行模拟器认证标准,重点关注飞行模型保真度和前庭运动提示要求。旋翼机建模和运动提示研究的结果强调了相关的保真度问题,旨在确定进一步活动的领域,以提高用于 LOC-I 预防训练的模拟器标准的保真度。
› attachment_data › file › Def... PDF Def Stan 00-970 第 7 部分临时第 4 期 Rotorcraft 将标准重新划分为 3 列。(要求、指导、可接受的合规方式)和...
