E.描述在R&D /显示合规性飞行测试期间维护飞机所需的维护和检查要求:(参考文献§91.409(a),(e),(f),(g),(g)和(h)。< / div>。大型飞机,涡轮喷气飞机,涡轮螺旋桨飞机驱动的多发射机和涡轮机动力旋翼飞机不得操作,除非所有者/运营商已经选择,建立,识别和使用第91.409(e),(f),(f),(g),(g)和(g)和(h)和(h)和(h)和(h)和/(g)和(g)和(g)和(g)和(f)中规定的检查程序。
论坛 79 还指出了过渡时期。在克服了 COVID-19 疫情之后,该行业仍在应对剩余的经济、供应链和劳动力挑战。与此同时,未来垂直升力 (FVL) 正在向前发展,全球新型民用直升机和先进旋翼机的发展也在向前发展,而电动垂直起降 (VTOL) 飞机演示显示出令人鼓舞的结果。论坛 79 还将把接力棒交给即将上任的执行董事 Angelo Collins。
火星样本回收直升机:旋翼机从火星表面回收第一批样本 (1359) Shannah Withrow-Maser、* H. Cummings、W. Johnson、C. Malpica、L. Meyn、N. Schatzman、L. Young,NASA 艾姆斯研究中心;M. Keennon、B. Pipenberg,AeroVironment, Inc.;H. Grip、T. Tzanetos,NASA 喷气推进实验室;B. Allan,NASA 兰利研究中心;A. Chan、W. Koning、A. Ruan,Science & Technology Corp.
EASA 已收到大量垂直起降 (VTOL) 飞机型号认证申请,这种飞机不同于传统的旋翼机或固定翼飞机。由于缺乏适合此类产品型号认证的认证规范,因此制定了一整套专用技术规范,即垂直起降飞机的特殊条件。特殊条件针对这些产品的独特特性,规定了颁发型号认证的适航标准,以及对此类认证的变更,适用于小型载人垂直起降飞机,其升力/推力装置用于产生动力升力和控制。
SkyTrac [MD2]是航空公司的全方位服务,数据驱动的解决方案提供商,为固定翼,旋翼和无人航空市场提供服务。自1986年以来,SkyTrac率先开发了飞行,飞行数据和通信技术的发展,演变和商业化。今天,拥有900多个机身和在线数据管理门户网站的系统认证,这是7,500多名全球用户的首选工具,SkyTrac确实是数据引导的业务见解的首选合作伙伴。从性能趋势和运营报告到实时资产跟踪和情境意识 - SkyTrac提供了对
1 美国运输部联邦航空管理局《航空信息手册》(附第 1 号变更),2016 年 5 月 26 日 2 14 CFR § 97.3 程序中使用的符号和术语。[如本部分规定的标准仪表程序中使用的那样——飞机进近类别是指基于速度 VREF(如果指定)或如果未指定 VREF,则为最大认证着陆重量下的 1.3 Vso 的飞机分组。VREF、Vso 和最大认证着陆重量是注册国认证机构为飞机确定的数值。类别如下——(1)A 类:速度低于 91 节。* * * 3 G-1 问题文件是根据 FAA 咨询通告 20-166 4. d. 对飞机认证基础的编纂;日期为 2010 年 6 月 15 日 4 FAA G-1 问题文件第 2 阶段,AW609 认证基础;日期:2016 年 6 月 6 日:AW609 认证基础,子部分 A - 一般规定,§ TR 1 适用性包括新的章节引用“TR”,它要么是新要求,要么是来自 14 CFR 第 23/25/29 部分的编辑/修改段落;并且,(c) 认证基础中使用的术语应解释如下:“旋翼机”、“A 类旋翼机”是指“倾转旋翼机”。 “飞机”是指“倾转旋翼机”。 “副翼”、“襟翼”是指“副翼”。 “方向舵”是指“方向控制”。 “旋翼、螺旋桨”是指“螺旋桨”。
耦合飞行动力学、空气力学和气动声学模拟 § 线性化、稳定性、降阶、控制 § 实时空气力学和声学 § 实时交互空气动力学 § 旋翼飞行器(直升机、倾转旋翼机等)§ 扑翼微型飞行器(昆虫、鸟类) 先进飞行控制系统 § 旋翼机飞行控制系统 § 主动降噪飞行控制律 § 主动旋翼振动飞行控制律 感知建模和飞行员提示方法 § 全身触觉反馈 § 多模态飞行员建模 § 自转/舰载着陆提示算法
该部门从事载人和无人军用飞机及用于打击、监视和机动的武器系统的研究、开发、生产和改造,包括战斗机和教练机;垂直升力飞机,包括旋翼机和倾转旋翼机;以及商用衍生飞机,包括反潜机和加油机。此外,该部门还从事以下产品和相关服务的研究、开发、生产和改造:战略防御和情报系统,包括战略导弹和防御系统;指挥、控制、通信、计算机、情报、监视和侦察 (C4ISR);网络和信息解决方案;情报系统、卫星系统;包括政府和商业卫星;以及太空探索。
与固定翼飞机飞行员相比,直升机飞行员在恶劣天气方面面临着独特的挑战。旋翼机通常在场外较低高度运行,而这些区域并不总是有气象报告站的良好覆盖。尽管最近的技术进步增加了飞行员可以在驾驶舱中访问的气象数据量,但天气仍然是 28% 致命直升机事故的一个因素。在这项研究中,对商用直升机飞行员进行了调查和采访,以更好地了解他们如何收集和处理天气信息,当前气象工具的局限性是什么,以及他们的决策过程如何受到他们收集和/或接收的信息的影响。研究发现,飞行员在飞行前阶段使用各种各样的气象源来做出最初的飞行或不飞行决定,但在飞行过程中在驾驶舱中使用的气象源较少。飞行员强调了他们在典型操作领域中可用的天气信息稀疏且有时不准确。为了弥补这一点,他们被迫依靠当地和经验性天气知识来补充天气报告,同时仍在努力减轻其他外部压力。根据文献和这项工作的结果,提出了解决旋翼机社区面临的与天气相关的差距的建议。这包括在机场和人口稠密地区外安装额外的气象报告站,进一步向所有行业的直升机飞行员推广 HEMS 工具,开发能够可视化雾等轻微降水的气象工具,以及开发有助于减少解释天气信息的认知工作量的飞行中图形显示。
