o目前的毕业生或医学生:将在奖学金开始之前毕业的申请人(2025年1月1日),并获得博士学位和/或MD学位(或同等学历)。o博士后任命者/研究员:目前在IU的博士后任命或同事身份的申请人。如果您目前由另一个奖学金(NIH,Foundation,CTSI或其他)资助,请在申请之前与您的赠款管理员联系以确保遵守当前的资助机构。o早期职业教师:奖励时(2025年1月1日)在终端学位后十年内的申请人。•有足够的时间使他们能够满足全年奖学金要求的申请人。•特别鼓励临床研究受训者申请。•IADRC和SNRI强烈鼓励妇女和代表性不足的少数民族候选人的申请。
新近揭露的H2舷外板被设计为Yamaha到2035年实现碳中立性策略的一部分。H2舷外机是世界上第一个用于休闲船的氢供电舷外机,并与该公司计划在今年晚些时候进行进一步改进的原型燃料系统一起推出。Yamaha与Roush Industries,Inc。联手开发了燃油系统,以为新的舷外提供动力,并与长期造船者合作伙伴合作伙伴Marine,Inc。合作,建造了一艘适合测试原型外部原型的船。 共同计划开始测试的原型Yamaha与Roush Industries,Inc。联手开发了燃油系统,以为新的舷外提供动力,并与长期造船者合作伙伴合作伙伴Marine,Inc。合作,建造了一艘适合测试原型外部原型的船。共同计划开始测试
作者要感谢慷慨地为本案例研究贡献时间和专业知识的地区专家:Buckeye Hills 地区委员会的 Bret Allphin、Rural Action 的 Sarah Ballew、美国经济发展局的 Susan Brehm 和 Dennis Foldenauer、OhioSE 的 Katy Farber、俄亥俄大学的 John Glazer 和 Faith Knutsen、Third Sun Solar 的 Geoff Greenfield、俄亥俄河谷地区发展委员会的 John Hemmings 和 Jessica Keeton、俄亥俄中东部政府协会的 Alan Knapp 和 Jeannette Weirzbicki、俄亥俄阿巴拉契亚开发公司的 Megan Riddlebarger、俄亥俄东南部港务局的 Jesse Roush 和阿巴拉契亚地区委员会的 Jen Simon。我们还要感谢公正转型基金的 Cindy Winland 以及环境保护基金的 Jake Higdon 和 Susanne Brooks 对本报告早期草稿提出的有益评论。
参与者,促使护理领导力要求新毕业生的护士居住计划。地毯等。(2020)对2009年至2019年期间发表的与护理学生有关的文献进行了审查。他们将实习性定义为“本科生课程……提供了独立于护理学校的课程,并允许学生在医院(通常在夏季)成为RN之前的医院训练”(第328 - 329页)。地毯及其同事得出结论,这些计划减少了招聘成本和定向时间。这些计划的经济利益得到了Roush和Opsahl(2022)的进一步支持,后者开发了一项患者护理实习生(PCI)计划,供学生护理,观察护理和在高年级之前6周内执行UAP任务。PCI计划的目标是开发新护士的管道并促进护理人员保留。对该计划的财务分析显示,2年成本节省了227,801美元,投资回报率为76%。
参考文献1。Myers和Al。 木头。 2017年3月27日; 35:1758-63。 2。 南部和Al。 临床药物的布列塔尼。 2018年12月; 84(12):2928-3 3。 Miller和Al。 木头。 2016年5月27日; 34(25):2841-6。 4。 Roush和Al。 JAMA。 2007年11月14日; 298(18):2155-63。 5。 杰克逊。 bmj。 2004年11月27日; 329(7477):1254。 6。 泰勒和al。 木头。 2014 Jun 17; 32(29):3623-9 7。 Weinmann和Al。 儿科。 2019年7月1日; 144(1)。 8。 为www.immunizebc.ca/tetanus 9。 请参阅www.cdc.gov 刷子RL。 正义。 1991年11月1日; 14(11):1169-7 11。 黄色书CDC。 第4章:脊髓灰质岩。 12。 cj和al。 cjph。 2005年3月1日; 96(2):I1Myers和Al。木头。2017年3月27日; 35:1758-63。2。南部和Al。 临床药物的布列塔尼。 2018年12月; 84(12):2928-3 3。 Miller和Al。 木头。 2016年5月27日; 34(25):2841-6。 4。 Roush和Al。 JAMA。 2007年11月14日; 298(18):2155-63。 5。 杰克逊。 bmj。 2004年11月27日; 329(7477):1254。 6。 泰勒和al。 木头。 2014 Jun 17; 32(29):3623-9 7。 Weinmann和Al。 儿科。 2019年7月1日; 144(1)。 8。 为www.immunizebc.ca/tetanus 9。 请参阅www.cdc.gov 刷子RL。 正义。 1991年11月1日; 14(11):1169-7 11。 黄色书CDC。 第4章:脊髓灰质岩。 12。 cj和al。 cjph。 2005年3月1日; 96(2):I1南部和Al。临床药物的布列塔尼。2018年12月; 84(12):2928-33。Miller和Al。木头。2016年5月27日; 34(25):2841-6。 4。 Roush和Al。 JAMA。 2007年11月14日; 298(18):2155-63。 5。 杰克逊。 bmj。 2004年11月27日; 329(7477):1254。 6。 泰勒和al。 木头。 2014 Jun 17; 32(29):3623-9 7。 Weinmann和Al。 儿科。 2019年7月1日; 144(1)。 8。 为www.immunizebc.ca/tetanus 9。 请参阅www.cdc.gov 刷子RL。 正义。 1991年11月1日; 14(11):1169-7 11。 黄色书CDC。 第4章:脊髓灰质岩。 12。 cj和al。 cjph。 2005年3月1日; 96(2):I12016年5月27日; 34(25):2841-6。4。Roush和Al。JAMA。 2007年11月14日; 298(18):2155-63。 5。 杰克逊。 bmj。 2004年11月27日; 329(7477):1254。 6。 泰勒和al。 木头。 2014 Jun 17; 32(29):3623-9 7。 Weinmann和Al。 儿科。 2019年7月1日; 144(1)。 8。 为www.immunizebc.ca/tetanus 9。 请参阅www.cdc.gov 刷子RL。 正义。 1991年11月1日; 14(11):1169-7 11。 黄色书CDC。 第4章:脊髓灰质岩。 12。 cj和al。 cjph。 2005年3月1日; 96(2):I1JAMA。2007年11月14日; 298(18):2155-63。5。杰克逊。bmj。2004年11月27日; 329(7477):1254。 6。 泰勒和al。 木头。 2014 Jun 17; 32(29):3623-9 7。 Weinmann和Al。 儿科。 2019年7月1日; 144(1)。 8。 为www.immunizebc.ca/tetanus 9。 请参阅www.cdc.gov 刷子RL。 正义。 1991年11月1日; 14(11):1169-7 11。 黄色书CDC。 第4章:脊髓灰质岩。 12。 cj和al。 cjph。 2005年3月1日; 96(2):I12004年11月27日; 329(7477):1254。6。泰勒和al。木头。2014 Jun 17; 32(29):3623-9 7。 Weinmann和Al。 儿科。 2019年7月1日; 144(1)。 8。 为www.immunizebc.ca/tetanus 9。 请参阅www.cdc.gov 刷子RL。 正义。 1991年11月1日; 14(11):1169-7 11。 黄色书CDC。 第4章:脊髓灰质岩。 12。 cj和al。 cjph。 2005年3月1日; 96(2):I12014 Jun 17; 32(29):3623-97。Weinmann和Al。儿科。2019年7月1日; 144(1)。8。为www.immunizebc.ca/tetanus 9。请参阅www.cdc.gov刷子RL。正义。 1991年11月1日; 14(11):1169-7 11。 黄色书CDC。 第4章:脊髓灰质岩。 12。 cj和al。 cjph。 2005年3月1日; 96(2):I1正义。1991年11月1日; 14(11):1169-7 11。 黄色书CDC。 第4章:脊髓灰质岩。 12。 cj和al。 cjph。 2005年3月1日; 96(2):I11991年11月1日; 14(11):1169-711。黄色书CDC。第4章:脊髓灰质岩。12。cj和al。cjph。2005年3月1日; 96(2):I1
在线出席者:Daryl Wright、Julia Weigel、Luke Miller、Thomas LeQuire、Rebecca Price、Shannon Moore、Stuart Kaplow、Margaret Evans、Bruce Zavos、Scott Falvey、Nicholas Silbergeld、Scott Zacharko、Chelsea Steffes、Nicola Tran、Michael Matthews、Dun Scott、Cliff Majersik、Jared Deluccia、Bo Cheng、参议员 Ben Kramer、Ben Adams、Karen Massey、Aaron Rice Helps、Alice Bell、Eric Coffman、Jessica Riesett、Joanna Freeman、Luke Lanciano、Les Knapp、Lindsey Humphrey、Melissa Wilfong、Michael Manen、Rick Briemann、Steve Lauria、Todd Nedwick、Zachary Rockwell、Ruth White、众议员 Marvin Holmes、Khalid Malik、Kevin Walton、Daryl Wright、Kim Pezza、Joe Francaviglia、Chris Parts、Chris Stix、Amar Shah、Mark Szybist、Ruth Ann Norton、Shan Gordon、Seth Blumen、Jose Coronado-Flores、Smita Chandra Thomas、Anuj Khanna、Frederick Hoover、Ben Roush、Jamal Lewis、Justin Barry、Lisa Ramjohn、Louise Sharrow、Michael Flatt、Michael Hindle、Michael Powell、Hannah Allen、Erica Bannerman、James Burton、Senay Emmanuel、Liz Feighner、Nathan Fridinger、Joshua Galloway、Ashita Gona、Lori Graf、James Grevatt、Joshua Kace、Sonia Khanna、Logan Dean、Mark LeBel、Kathy Magruder、Greg Ackerman、Ian Marcus、Chris Hoagland、Tyler Pullen、Kristin Mielcarek、Cherise Seals、Ryan Trauley、Ben Voight
怀疑论的终结 i 《哲学杂志》 107 (5): 243-256, 2010。Sherrilyn Roush 人们普遍认为,怀疑论者在以下问题上有着毁灭性的论据。他说,你可能认为你知道自己有手。但是如果你知道你有手,那么你也会知道你不是缸中之脑,不是悬浮在液体中的大脑,电极为你提供由超级计算机生成的完美协调的印象,也不是一个看起来和移动起来都和这个世界一样的世界。如果你知道你有手,你就会知道你不是处于这种状态,因为有手意味着你不是缸中之脑。但你显然不知道你不是缸中之脑——你没有证据将那种状态与你认为你处于的正常状态区分开来。因此,根据反驳结论,你不知道自己有手。至少,如果我们承认怀疑论者在已知蕴涵的情况下知识是封闭的,而我们中的许多人都倾向于这样做,那么怀疑论者至少有一个毁灭性的论点:粗略地说,如果你知道 p,并且你知道 p 蕴涵 q,那么你就知道 q。ii 说这是一个直观上令人信服的论点是轻描淡写;寻找一个不是拍桌子、不是混淆视听或特别恳求的答复的项目已经让哲学家们苦苦思索了一段时间。人们详细地检查了论证的步骤,以找到在压力下会屈服的漏洞。其中一些努力很有趣,很有启发性,我认为有些甚至提供了辩证的胜利,将举证责任转移回了怀疑论者。尽管如此,正如我将要论证的那样,我们忽略了一个非常简单的观点:尽管上述怀疑论论点是有效的,但它有一个错误的前提,即声称我们似乎显然知道的东西蕴涵了我们在检查时似乎显然不知道的东西。我将论证,这一部分论证无法通过保留怀疑论威胁的方式进行修复。因此,如果怀疑论者想说服我们担心我们的普通知识,他将不得不提出一个完全不同的论点。在已知蕴涵下知识的封闭性(以下称为“封闭性”)对于上述怀疑论论证是必要的,但显然不是充分条件。要将封闭性原则应用于我们的案例,我们必须知道有手就意味着人不是缸中之脑。我们无法知道这一点,因为这一蕴涵不成立,而且虚假的主张无法得知,这一点认识论者已经意识到了。这一蕴涵不成立,因为一个人可能是缸中之脑,就上述描述而言,有手。手将无缝地连接到大脑,因此在不可否认的意义上是你的大脑。这些规定描述的场景与缸中之脑的原始场景一样可信。这种情景破坏了怀疑论者所需要的蕴涵,因为有手的缸中之脑是“有手意味着你不是缸中之脑”这一说法的反例。认识论者知道,怀疑论者首先提出的蕴涵主张由于刚才描述的可能性而不成立,因此蕴涵主张通常以显而易见的方式得到支持,即说有手意味着你不是无手的缸中之脑。有时,人们会在强调的词上加一个语气,以传达这样的判断:这个细节很乏味。然后,人们继续讨论
Adamson, PT、Rutherfurd, ID、Peel, MC、Conlan, IA,2009 年。湄公河的水文学。引自:Cambell, I.(编辑),湄公河:国际河流流域的生物物理环境,第一版。Elsevier,第 53 – 76 页。Alcayaga, H.、Belleudy, P.、Jourdain, C.,2012 年。流域尺度上水电结构对河流扰动的形态学建模。引自:Mu ˜ noz, RM(编辑),河流流量 2012。河流水力学国际会议,第 537 – 544 页。 Arias, ME、Cochrane, TA、Kummu, M.、Lauri, H.、Holtgrieve, GW、Koponen, J.、Piman, T.,2014。水电和气候变化对东南亚最重要湿地生态生产力驱动因素的影响。生态模型 272,252 – 263。Ashouri, H.、Hsu, K.、Sorooshian, S.、Braithwaite, DK、Knapp, KR、Cecil, LD、Nelson, BR、Prat, OP,2015。PERSIANN-CDR:来自多卫星观测的每日降水气候数据记录,用于水文和气候研究。美国流星学会通报 96(1),69 – 83。 Ayugi, B., Tan, G., Gnitou, GT, Ojara, M., Ongoma, V., 2020. 罗斯贝中心区域气候模型对东非降水的历史评估和模拟。大气研究 232, 104705 。Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., Zhang, A., 2012. 中国北方海河流域径流量减少的归因:气候变化还是人类活动?水文地质学杂志 460 – 461, 117 – 129 。Bartkes, M., Brunner, G., Fleming, M., Faber, B., Slaughter, J., 2016. HEC-SSP 统计软件包用户手册 2.1 版。美国陆军工程兵团。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2018a。澜沧江梯级大坝对越南湄公河三角洲流态的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (4), 487 – 492。Binh, DV、Kantoush, S.、Mai, NP、Sumi, T.,2018b。越南湄公河三角洲在增加管制流量和河流退化的情况下的水位变化。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 871 – 876。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2019。湄公河流域的长期排放、水位、盐度浓度和降水。 Mendeley Data V3 。Binh, DV、Kantoush, S.、Sumi, T.,2020. 上游水坝导致越南湄公河三角洲长期排放和沉积物负荷的变化。地貌学 353,107011。Cook, BI、Bell, AR、Anchukaitis, KJ、Buckley, BM,2012。积雪和降水对湄公河下游流域旱季径流的影响。地球物理研究杂志 117,D16116。Dang, TD、Cochrane, TA、Arias, ME、Van, PDT、Vries, TTD,2016。湄公河洪泛区水利基础设施建设带来的水文变化。水文过程 30,3824 – 3838。 Darby, SE、Hackney, CR、Leyland, J.、Kummu, M.、Lauri, H.、Parsons, DR、Best, JL、Nicholas, AP、Aalto, R.,2016 年。热带气旋活动变化导致巨型三角洲河流沉积物供应减少。《自然》276 – 279。Eslami, S.,Hoekstra, P., Trung, NN, Kantoush, SA, Binh, DV, Dung, DD, Quang, TT, Vegt, MVD,2019。人为沉积物匮乏导致湄公河三角洲的潮汐放大和盐入侵。Sci. Rep. 9,18746。Fan, H., He, D., Wang, H.,2015。筑坝澜沧江-湄公河主流的环境后果:综述。Earth-Sci. Rev. 146,77 – 91。Ha, TP, Dieperink, C., Tri, VPD, Otter, HS, Hoekstra, P.,2018a。越南湄公河三角洲适应性淡水管理的治理条件。J. Hydrol. 557,116 – 127。 Ha, DT、Ouillon, S.、Vinh, GV,2018b。根据高频测量(2009 – 2016 年)得出的湄公河下游水和悬浮沉积物预算。水 10, 846 。Harris, I.、Osborn, TJ、Jones, P.、Lister, D.,2020。CRU TS 月度高分辨率网格化多元气候数据集第 4 版。科学数据。https://doi.org/10.1038/s41597-020-0453-3)。Hecht, JS、Lacombe, G.、Arias, ME、Dang, TD,2019。湄公河流域的水电大坝:其水文影响回顾。水文杂志 568, 285 – 300 。 Hoang, L.、Ngoc, TA、Maskey, S.,2016。一种用于估算越南湄公河三角洲 CERES-rice 模型参数的稳健参数方法。大田作物研究。196,98 – 111。Hoanh, CT、Jirayoot, K.、Lacomne, G.、Srunetr, V.,2010。气候变化和发展对湄公河流量制度的影响:首次评估 – 2009 年。MRC 技术论文第 29 号。湄公河委员会,老挝万象。Jordan, C.、Tiede, J.、Lojek, O.、Visscher, J.、Apel, H.、Nguyen, HQ、Quang, CNX、Schlurmann, T.,2019。重新审视湄公河三角洲的采砂 – 目前当地沉积物短缺的规模。 Rep. 9,17823 。 Kantoush, S.、Binh, DV、Sumi, T.、Trung, LV,2017。上游水电站大坝和气候变化对越南湄公河三角洲水动力学的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 73 (4),109 – 114 。Kendall, AMG,1938。一种新的秩相关性测量方法。Oxford J. 30,81 – 93 。Kiem, AS、Ishidaira, H.、Hapuarachchi, DP、Zhou, MC、Hirabayahi, Y.、Takeuchi, K.,2008。使用高分辨率日本气象局 (JMA) AGCM 模拟湄公河流域未来水文气候学。水文过程。22,1382 – 1394 。 Kingston, DG、Thompson, JR、Kite, G.,2010。湄公河流域气候变化预测排放量的不确定性。水文地球系统科学讨论。7,5991 – 6024。Kondolf, GM、Rubin, ZK、Minear, JT,2014。湄公河上的水坝:累积沉积物匮乏。水资源研究。50,5158 – 5169。 Kondolf, GM, Schmitt, RJP, Carling, P., Darby, S., Arias, M., Bizzi, S., Castelletti, A., Cochrane, TA, Gibson, S., Kummu, M., Oeurng, C., Rubin, Z., Wild, T., 2018. 湄公河沉积物预算的变化:大型河流流域的累积威胁和管理策略。环境科学总论 625, 114 – 134 。Kummu, M., Lu, XX, Wang, JJ, Varis, O., 2010.湄公河沿岸新兴水库的全流域泥沙截留效率。地貌学 119,181 – 197 。 Lauri, H.,De Moel, H.,Ward, PJ,R ¨ as ¨ anen, TA,Keskinen, M.,Kummu, M.,2012。湄公河水文未来变化:气候变化和水库运行对流量的影响。水文地球系统科学 16,4603 – 4619 。 Li, D.,Long, D.,Zhao, J.,Lu, H.,Hong, Y.,2017。湄公河流域观测到的流动状态变化。水文杂志 551,217 – 232 。 Lu, XX,Siew, RY,2006。过去几十年来湄公河下游的水流量和泥沙通量变化:中国大坝的可能影响。 Hydrol. Earth Syst. Sci. 10, 181 – 195 。 Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流变化观测结果:中国水坝的影响? Quat. Int. 336, 145 – 157 。 Mai, NP, Kantoush, S., Sumi, T., Thang, TD, Trung, LV, Binh, DV, 2018. 评估和适应水坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378 。 Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。