近年来,对月球的探索已成为私营和政府机构非常感兴趣的话题。ispace 的目标是通过利用月球资源和扩大我们在太空的存在,成为私营企业获得月球新商机的推动者。极地冰探测器 (PIE) 是一项原位资源利用 (ISRU) 探索任务,旨在寻找和描述月球极地地区的潜在水冰沉积物。在本项目的范围内,将讨论月球车热控制系统的开发。PIE 利用 ispace 开发并经过飞行认证的 Team HAKUTO 的 SORATO 月球车。本文探讨了三个关键领域的发现:月球极地永久阴影区 (PSR) 的运行、月球车系统的热控制设计和月球环境建模。对月球极地地区的热建模特别关注表面特性的识别、月球风化层特征和环境通量的建模。研究了运行任务约束,例如冷却速率和加热器功率要求。热设计理念旨在通过将探测车与地面分离、减少热损失和管理传导路径来最大限度地利用被动控制手段。研究了较大的温度波动引起的机械问题。对于操作范围较窄的元件,如电池、电机和外部安装元件,考虑了主动控制手段。概述了探测车热设计挑战和使 PSR 运行的初步发现。
r = [ x, y, z ] 笛卡尔坐标系中的位置向量及其元素 a G = [ a G x , a G y , a G z ] 标准化重力加速度 er 小行星轨道偏心率 ar 小行星轨道半长轴(米) fr 小行星轨道真异常(弧度) U 与小行星谐波相关的标准化重力势能 d 太阳与小行星之间的距离 LU 距离单位 TU 时间单位 β 太阳辐射压标准化加速度 a SRP 太阳辐射压非标准化加速度(米/秒2) γ 反射率 p 0 太阳通量常数(千克·米/秒2) m 探测器质量(千克) A 探测器投影面积(米2) μ S 太阳引力参数(米3/秒2) μ 小行星引力参数(米3/秒2) P 勒让德多项式 l, m 考虑的谐波的阶数和次数 C lm , S lm 库存系数 φ 小行星固定框架中的纬度(弧度) λ 经度(弧度) n 平均运动(弧度/秒) CJ 雅可比积分(米2/秒2) vc 临界速度(米/秒) vo 二体问题中的圆轨道速度(米/秒) vm 速度裕度(米/秒) a 航天器轨道的半长轴(米) e 航天器轨道的偏心率 I 航天器轨道的倾角 W 航天器轨道上升节点的经度 w 航天器轨道的近地点增强 f 航天器轨道的真异常
近年来,Cansats已成为模拟卫星比赛中的流行选择。在Cansat con-constss中,Arliss项目是使用火箭发射Cansat进入天空的项目。arliss提供了发射罐头的火箭,该火箭的高度约为〜4,000 m,然后将流动器放到降落伞的地面上。但是,几个团队的流浪者无法承受发射时应用的大加速度,这会损坏并使其无效。发射期间适用于火箭的加速度以前由多个团队衡量;但是,由于Cansat是一个小型嵌入式设备,因此无法使用具有较大测量范围和高采样频率的加速度传感器。在这项研究中,我们测量了从发射开始应用于流动站的效应,直到使用具有更广泛测量范围的加速度传感器在地面上掉落,并通过比以前更高的采样频率获取数据。发现加速度比在发射火箭时的常规测量中大于速度,并掉落到地面。此外,提供了可以承受这些影响,进行准确的测量并在Arliss中不断裂的情况下操作的漫游者结构的技术细节的描述。
摘要:将于2030年左右建立的国际月球研究站,将为月球漫游器提供机器人武器作为建筑商。建筑需要月球土壤和月球漫游者,为此,由于短暂的一天,尤其是在南极附近,漫游者必须在有限的时间内遇到不同的航路点,而不会在有限的时间内遇到障碍。传统的计划方法,例如从地面上载指令,几乎无法以高效的效率同时处理许多流浪者。因此,我们提出了一种基于深度强化学习的新的协作路径规划方法,在该方法中,人工电位领域的目标和障碍都证明了启发式方法。的环境是随机生成的,在创建大小障碍和不同的航路点以收集资源,训练深厚的增强学习代理以提出行动,并带领流浪者在没有障碍,完成漫游者的任务并达到不同目标的情况下移动。在每个步骤中,由障碍物和其他流浪者创造的人工潜力领域都会影响流动站的动作选择。人工潜力领域的信息将转变为有助于保持距离和安全性的深度加强学习中的奖励。实验表明,我们的方法可以引导流浪者更安全地移动,而不会变成附近的大障碍或与其他流浪者发生碰撞,并且与具有改进的避免障碍物方法的多代理A-Star路径计划算法相比,消耗的能量更少。
文章历史:在过去的十年中,已经开发了各种基于速度障碍的方法,以避免动态环境中的碰撞。但是,这些方法通常仅限于处理几个障碍,连续的相遇或缺乏安全地形的安全保证。本文提出了使用速度障碍法的自适应碰撞避免策略,旨在使自主火星流浪者能够安全地驾驶动态和不确定的地形,同时避免多个障碍。该策略构建了自适应速度锥体,考虑了动态障碍和地形特征,从而确保了连续的安全性,同时将漫游者引导到其航路点。我们在模拟的MARS探索方案中实施了策略,代表了具有挑战性的多OSTACLAS任务。模拟结果表明,我们的方法通过增加安全距离来增强性能,使其非常适合自主行星探索,在这种情况下,避免碰撞对于任务成功至关重要。
许可证允许 TENACIOUS 微型探测器在 2 号任务期间在月球表面运行 卢森堡——2025 年 1 月 8 日——总部位于卢森堡的月球探索和资源开发公司 ispace-EUROPE SA(ispace-EUROPE)已根据 2017 年卢森堡空间资源法获得任务授权,可以在即将到来的 ispace, inc.(ispace)2 号任务期间运行 TENACIOUS 微型探测器。该微型探测器计划于 2025 年 1 月中旬之前发射,此次批准标志着一个历史性的里程碑,因为这是欧洲首次获得授权以实现空间资源的商业利用。卢森堡经济部颁发的这项批准将 ispace-EUROPE 定位为空间资源商业化的全球领导者,并肯定了卢森堡在促进空间经济创新方面的关键作用。 TENACIOUS 微型探测车专为月球探索和资源利用而设计,它将执行关键操作,包括收集和转让月球风化层的所有权,以便 ispace-EUROPE 执行与 NASA 签署的 2020 年风化层合同。ispace-EUROPE 首席执行官 Julien Lamamy 表示:“这项授权标志着欧洲太空探索的历史性时刻,因为这是首个支持商业太空资源活动的授权。像我们这样的任务不仅取决于技术能力,还需要强大的法律框架来指导、支持和授权太空商业运营。我们非常感谢卢森堡政府的支持,他们的前瞻性政策和对太空领域的承诺对于实现 ispace 的月球雄心至关重要。借助 Tenacious,我们将朝着实现地月经济潜力和推进月球探索愿景迈出又一步。” 2017 年《卢森堡太空资源法》提供了支持商业探索和利用太空资源所需的法律框架,这是卢森堡太空经济战略的重要组成部分。通过获得这项授权,ispace-Europe 不仅推进了 Mission 2 的目标,还为欧洲未来的商业太空资源活动开创了先例。卢森堡经济、中小企业、能源和旅游部长 Lex Delles 评论道:“这项授权不仅标志着实现地月空间探索潜力的历史性一步,而且标志着我们朝着实现地月空间探索目标迈出了重要一步。”
向下一代高性能迁移的首选。ASPEN 中 L3Harris ROVER 功能的整体设计提供了与所有机载、水面和海军平台的完整战场空间集成,包括广泛部署的 ROVER 6、OSRVT™、TACTICAL NETWORK ROVER 手持设备、CMDL™(LITENING 和狙击吊舱)、BANDIT™(ScanEagle 无人机)和其他战术资产。经过验证的可靠性和经过认证的加密功能是美国政府和美国盟国依靠 L3Harris 提供作战通信解决方案。
向下一代高性能迁移的首选。ASPEN 中 L3Harris ROVER 功能的整体设计提供了与所有机载、水面和海军平台的完整战场空间集成,包括广泛部署的 ROVER 6、OSRVT™、TACTICAL NETWORK ROVER 手持设备、CMDL™(LITENING 和狙击吊舱)、BANDIT™(ScanEagle UAV)和其他战术资产。经过验证的可靠性和经过认证的加密功能是美国政府和美国盟友依赖 L3Harris 提供作战通信解决方案的原因。
在Inmotion上,我们正在投资运输,流动性和旅行的未来。由Jaguar Land Rover提供支持,我们支持改变我们的移动方式的企业家和创新者。Inmotion Ventures是Jaguar Land Rover的Venture Capital Fund。我们投资于改变城市流动性的早期技术公司,支持积极的户外生活方式并提供独特的旅行体验。我们总部位于伦敦,并在全球投资。Inmotion的移动服务ARM Studio 107与我们的母公司Jaguar Land Rover紧密合作,在城市出行部门建立新服务。名称Studio 107是Motorsport中107%规则的致敬。在排位赛中,不允许不允许在最快排位赛时间的107%以内设置单圈的驾驶员开始。我们的目标是选择发挥我们优势的想法并将其发展为获胜的业务。了解有关Inmotion的更多信息,请参阅:InMotionVentures.com关于Jaguar Land Rover
洛雷拉·巴特利 (Lorella Battelli),意大利理工学院,意大利;美国哈佛大学 Marta Bortoletto,意大利圣乔凡尼迪迪奥法特贝内弗拉泰利 IRCCS Luigi Cattaneo,意大利特伦托大学 Gesa Hartwigsen,德国莱比锡马克斯普朗克人类认知与脑科学研究所 Carlo Miniussi,意大利特伦托大学 Gregor Thut,英国格拉斯哥大学