获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
可以通过使用神经网络近似其矢量场来学习系统的不变动态,这是一种称为神经odes的概念(Chen等人。,2018b; Rubanova等。,2019年; Yildiz等。,2019年)。然而,这些模型的损失景观的复杂性随观察到的轨迹的长度而增加,因此它们的训练也无法收敛于中等长的观察范围(Ribeiro等人。,2020年; Metz等。,2022)。早期溶液将长轨迹分为较小的细分市场,并通过约束确保概率模型的连续性(Hedge等人。,2022; Iakovlev等。,2023)。然而,在没有离散近似值的情况下安装长轨迹仍然是一个空旷的问题。