当前对比特币基础工作证明技术的分析几乎完全基于财务,货币或经济理论。在进行假设时,对比特币的演绎分析进行回收相同的理论框架具有产生系统性级别的分析偏见的潜力,这可能会对公共政策的努力产生负面影响,甚至可能对美国国家安全构成威胁。本论文介绍了一个新颖的理论框架,用于分析比特币作为电蛋白安全技术的潜在国家战略影响,而不是点对点现金系统。本论文的目的是为研究社区提供不同的参考框架,他们可以用来产生假设,并演绎地分析工作证明技术的潜在风险和回报,这是严格的货币技术以外的其他东西。作者断言,研究人员探索工作证明技术的替代功能,以消除潜在的盲点,对比特币(例如比特币的风险和奖励)的风险和奖励,提供更全面国家的网络安全。利用扎根理论方法,作者结合了不同知识领域的不同概念(例如作者称这种新颖的力量投影策略为“软件”,并探讨了其对21世纪国家战略安全的潜在影响。生物学,心理学,人类学,政治学,计算机科学,系统安全和现代军事战略理论)制定了一个名为“权力投影理论”的新颖框架。 Based on the core concepts of Power Projection Theory, the author inductively reasons that proof-of- work technologies like Bitcoin could not only function as monetary technology, but could also (and perhaps more importantly) function as a new form of electro-cyber power projection technology which could empower nations to secure their most precious bits of information (including but not limited to financial bits of information) against belligerent actors by giving them the ability to impose severe physical costs on other nations in, from, and通过网络空间。像大多数基础理论研究工作一样,本文的主要交付是一种新颖的理论,而不是对从现有理论得出的假设的演绎分析。论文主管:琼·鲁宾系统设计与管理计划执行董事
二级中尉 Leland T. Harder, Jr.,1944 年 3 月 26 日 二级中尉 James L. Harris,1944 年 3 月 26 日 二级中尉 Frederick E. Lindgren,1944 年 3 月 26 日 副官 Albert P. Schug,1944 年 3 月 26 日 军士长 Steve J. Grencik,1944 年 3 月 26 日 上士 Ben G. Montgomery,1944 年 3 月 26 日 上士 Robert E. Nicholson,1944 年 3 月 26 日 上士 James Rago,1944 年 3 月 26 日;上士 William D. Redd,1944 年 3 月 26 日中士 John J. Pawlina,1944 年 3 月 26 日 上士/中士 David W. Fogo,1944 年 3 月 28 日 一等中尉 Arthur F. Noel,1944 年 3 月 29 日 少校 William P. “Tony” Conway, Jr.,1944 年 4 月 1 日 轮班/中士“Gerald” Thomas Harrigan,1944 年 4 月 7 日 一等中尉 Onufry W. Dzwonkoski,1944 年 4 月 9 日 上尉 Richard L. Meister,1944 年 4 月 10 日 上士/中士 Russell E. Hill,1944 年 4 月 22 日 上尉 Edward P. McDermott,1944 年 4 月 26 日 二级中尉 William F. Dieterich,1944 年 4 月 26 日 二级中尉 William Gallagher, Jr.,1944 年 4 月 26 日 二级中尉 Wilfred W. Larsen,1944 年 4 月 26 日二级中尉 Kenneth F. Lechert,1944 年 4 月 26 日 二级中尉 James T. W. Moseley, Jr.,1944 年 4 月 26 日 二级中尉 Max E. York,1944 年 4 月 26 日 上士 Charley O. Bertrand,1944 年 4 月 26 日 中士 Pedro Beltran,1944 年 4 月 26 日 中士 Jacob I. Hedrick, Jr.,1944 年 4 月 26 日 中士 Frank H. Kobus,1944 年 4 月 26 日 中士 Robert L. Luke,1944 年 4 月 26 日 中士 Le Roy D. Thompson,1944 年 4 月 26 日 中士 Joseph J. White,1944 年 4 月 26 日 一等兵 Raymond L. Norris, Jr.,1944 年 4 月 26 日 二级中尉 Paul E. Fox,1944 年 4 月 27 Sprecher,1944 年 4 月 27 日 1/LT Hubert L. Gholson,1944 年 5 月 20 日 CAPT John D. Root,1944 年 6 月 8 日 SGT Fred W. Purchase,1944 年 6 月 10 日 1/LT John J. Mann,1944 年 7 月 7 日 2/LT William L. Davis,1944 年 7 月 7 日 下士 Kenneth E. Blair,1944 年 7 月 8 日 1/LT Douglas G. McMillin,29 A
参考文献:1. Skyrizi [包装说明书]。伊利诺伊州北芝加哥:AbbVie Inc.;2024 年 6 月。2. Menter A,Korman NJ,Elmets CA,等人。银屑病和银屑病关节炎的护理管理指南。第 4 节:使用传统全身药物治疗和治疗银屑病的护理指南。美国皮肤病学杂志。2009;61(3):451-485。3. Menter A,Korman NJ,Elmets CA,等人。银屑病和银屑病关节炎的护理管理指南。第 6 节:银屑病和银屑病关节炎的治疗护理指南:基于病例的介绍和基于证据的结论。美国皮肤病学杂志。2011;65(1):137-174。 4. Gordon KB、Strober B、Lebwohl M 等。risankizumab 治疗中度至重度斑块状银屑病(UltIMMa-1 和 UltIMMa-2)的疗效和安全性:两项双盲、随机、安慰剂对照和乌司他丁对照的 3 期试验结果。柳叶刀。2018;392(10148):650-661。5. Menter A、Strober BE、Kaplan DH 等。AAD-NPF 联合生物制剂银屑病管理和治疗护理指南。J Am Acad Dermatol。2019;80(4):1029-1072。6. 结核病感染检测。疾病控制与预防中心。 2024 年 1 月 11 日检索自:https://www.cdc.gov/tb/topic/testing/tbtesttypes.htm。7. Singh JA、Guyatt G、Ogdie A 等人。2018 年美国风湿病学会/美国国家银屑病基金会银屑病关节炎治疗指南。Arthritis Rheum。2018;71:5-32。8. Gossec L、Baraliakos X、Kerschbaumer A 等人。欧洲抗风湿病联盟 (EULAR) 关于使用药物疗法治疗银屑病关节炎的建议:2019 年更新。Ann Rheum Dis。2020;79(6):700-712。9. D'Haens G、Panaccione R、Baert F 等人。 Risankizumab 作为克罗恩病的诱导疗法:来自 3 期 ADVANCE 和 MOTIVATE 诱导试验的结果。柳叶刀。2022;399(10340):2015-2030。10. Lichtenstein GR、Loftus Jr EV、Isaacs KI 等人。ACG 临床指南:成人克罗恩病的治疗。Am J Gastroenterol。2018;113:481-517。11. Coates LC、Soriano ER、Corp N 等人。银屑病和银屑病关节炎研究与评估组 (GRAPPA):2021 年银屑病关节炎最新治疗建议。自然风湿病学评论。2022;18(8):465-479。 13. Menter A、Gelfand JM、Connor C 等人。美国皮肤病学会-美国国家银屑病基金会联合制定的全身非生物疗法治疗银屑病的护理指南。《美国皮肤病学杂志》。2020;82(6):1445-1486。14. Talley NJ、Abreu MT、Achkar J 等人。炎症性肠病药物治疗的循证系统评价。《美国胃肠病杂志》。2011;106(补充1):S2-S25。15. Rubin DT、Ananthakrishnan AN 等人。2019 年 ACG 临床指南:成人溃疡性结肠炎。《美国胃肠病杂志》。2019;114:384-413。 16. Feuerstein JD、Isaacs KL、Schneider Y 等。AGA 中度至重度溃疡性结肠炎管理临床实践指南。胃肠病学。2020;158:1450。
Yu-xuan Lyu 1,2,* , qiang fu 3,4,* , dominic wick 6,125,* , kejun ying 7,* , Aaron King Kaya 13 , Andrea B. Maier 14 , Andrea Olsen 15 , Anja Groth 16 , Anna Katharina Simon 17,18 , Anne Brunet 19 , Aisyah Jamil 20 , Anton Kulaga 22 , Benjamin Yaden Örnumacher 25 , Boris DjordJervic 26,27 , Brian Kennedy 14 , Chieh Chen 28,29 , Christine Yuan Huang 30 , Christopph U. Correll 31,32 , Collin y. , Dariusz Sołdacki 40 , David Erritzoe 41 , David Meyer 25 , Sinclair 42 , Eduardo Nunesni 43 , Emma C. Teeling 48 , Evandro F. Fang 49 , Evelyne Bischof 50 , Evi M. Mercken 51 , Fabian Finger 52 , Folkert Kuipers , Frank W. Pun 54 , Gabor Gyünze , Gari Harold A. Pincus 59 , Joshua McClure 60 , James L. Kirkland 61 , James Peyer 62 , Jamie N. Justice 63 , Jan VIJG 64 , Jennifer R. Gruhn 65 , Jerry mlaughlin 66 , Joan Mannick , Joe Betts-Lacroix 70 , John M. Sedivy 71 , John R. Speakman 72 , Jordan Shlain 73 , Julia von Maltzahn 74 , Katrin I. Andreasson 75 , Krikaras fort 76 , Constantnus Palikaras for Feer 78 , Lene Juel Rasmussen 79 , Liesbeth M. Veenhoff 53 , Lisa Melton 80 , Luigi ferrucci 81 , Marco Quarta 82,83,84 , Maria Kval 85 , Maria Marinova 86 , Mark Gingel 89 , Milos Filipovic 90 , Mourad Topors 91 , Nataly Mitin 92 , Nawal Roy 93 , Nika Pintar 94 , NIR BARZILAI , ter O. Fedichev 98 , Petrina Kamya 99 , Pura Muñoz-Canoves 100 , Rafael de Cabo 101 , Richard Garagher 102 , Rob Konrad 103 , Roberto ripa 2 , Sabrina Bütttttttttttttttttttttttttttnner , Sebastian Brumeeier 107 , Sergey Jakimov 57 , Shan Luo 108 , Sharon Rosenzweig-Plipson 66 , Shih-Yin Tsai 109 , Stefanie Dimmeler 110 , Thomas R. , Tony Wyss-Coray 75 , toy finel 115 , tzispora strauss 116,117 , Vadyshev 7 , Valter D. song. Zo Sorsinino 14 , Vittorio Sebastiano 122 , Wenbin Li 123 , Yousin Suh 124 , Alex Zhavoronkov 20 , Morten Scheeketee-Knudensen 79 , Daniela Bakula
4。Braun,T。P.,Eide,C。A.&Druker,B。J。对BCR-ABL1靶向疗法的反应和抗性。癌细胞卷。37 530–542预印本在https://doi.org/10.1016/j.ccell.2020.03.006(2020)。5。Cheng,H。C.,Qi,R。Z.,Paudel,H。&Zhu,H。J. 蛋白激酶和磷酸酶的调节和功能。 酶研究卷。 2011预印本在https://doi.org/10.4061/2011/794089(2011)。 6。 Bhullar,K。S.等。 以激酶为目标的癌症疗法:进步,挑战和未来的方向。 分子癌卷。 17预印本在https://doi.org/10.1186/s12943-018-0804-2(2018)。 7。 Grant,S。K.治疗蛋白激酶抑制剂。 细胞和分子生命科学卷。 66 1163–1177预印本在https://doi.org/10.1007/s00018-008-8539-7(2009)。 8。 Geraldes,P。&King,G。L.蛋白激酶C同工型的激活及其对糖尿病并发症的影响。 循环研究卷。 106 1319–1331预印本https://doi.org/10.1161/circresaha.110.217117(2010)。 9。 Silnitsky,S.,Rubin,S。J. S.,Zerihun,M。&Qvit,N。蛋白激酶作为治疗靶靶标的更新 - 第一部分:蛋白激酶C激活及其在癌症和心血管疾病中的作用。 国际分子科学杂志卷。 24预印本在https://doi.org/10.3390/ijms242417600(2023)。 10。 Pottier,C。等。 癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。 11。Cheng,H。C.,Qi,R。Z.,Paudel,H。&Zhu,H。J.蛋白激酶和磷酸酶的调节和功能。 酶研究卷。 2011预印本在https://doi.org/10.4061/2011/794089(2011)。 6。 Bhullar,K。S.等。 以激酶为目标的癌症疗法:进步,挑战和未来的方向。 分子癌卷。 17预印本在https://doi.org/10.1186/s12943-018-0804-2(2018)。 7。 Grant,S。K.治疗蛋白激酶抑制剂。 细胞和分子生命科学卷。 66 1163–1177预印本在https://doi.org/10.1007/s00018-008-8539-7(2009)。 8。 Geraldes,P。&King,G。L.蛋白激酶C同工型的激活及其对糖尿病并发症的影响。 循环研究卷。 106 1319–1331预印本https://doi.org/10.1161/circresaha.110.217117(2010)。 9。 Silnitsky,S.,Rubin,S。J. S.,Zerihun,M。&Qvit,N。蛋白激酶作为治疗靶靶标的更新 - 第一部分:蛋白激酶C激活及其在癌症和心血管疾病中的作用。 国际分子科学杂志卷。 24预印本在https://doi.org/10.3390/ijms242417600(2023)。 10。 Pottier,C。等。 癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。 11。蛋白激酶和磷酸酶的调节和功能。酶研究卷。2011预印本在https://doi.org/10.4061/2011/794089(2011)。6。Bhullar,K。S.等。以激酶为目标的癌症疗法:进步,挑战和未来的方向。分子癌卷。17预印本在https://doi.org/10.1186/s12943-018-0804-2(2018)。7。Grant,S。K.治疗蛋白激酶抑制剂。细胞和分子生命科学卷。66 1163–1177预印本在https://doi.org/10.1007/s00018-008-8539-7(2009)。8。Geraldes,P。&King,G。L.蛋白激酶C同工型的激活及其对糖尿病并发症的影响。循环研究卷。106 1319–1331预印本https://doi.org/10.1161/circresaha.110.217117(2010)。9。Silnitsky,S.,Rubin,S。J. S.,Zerihun,M。&Qvit,N。蛋白激酶作为治疗靶靶标的更新 - 第一部分:蛋白激酶C激活及其在癌症和心血管疾病中的作用。国际分子科学杂志卷。24预印本在https://doi.org/10.3390/ijms242417600(2023)。 10。 Pottier,C。等。 癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。 11。24预印本在https://doi.org/10.3390/ijms242417600(2023)。10。Pottier,C。等。癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。11。癌症卷。12 https://doi.org/10.3390/cancers12030731(2020)的预印本。Barouch-Bentov,R。&Sauer,K。激酶中耐药性的机制。有关研究药物的专家意见。20 153–208预印本在https://doi.org/10.1517/13543784.2011.546344(2011)。12。Lin,J。J. &Shaw,A。T.抵抗力:肺癌的靶向疗法。 癌症趋势。 2 350–364预印本在https://doi.org/10.1016/j.trecan.2016.05.010(2016)。 13。 de Santis,S。等。 克服对激酶抑制剂的抗性:慢性髓样白血病的范例。 Oncotargets and Therapy Vol。 15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。 14。 Drilon,A。等。 下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。 癌症Discov 7,963–972(2017)。 15。 Schoepfer,J。等。 发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。 J Med Chem 61,8120–8135(2018)。 16。 OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。Lin,J。J.&Shaw,A。T.抵抗力:肺癌的靶向疗法。癌症趋势。2 350–364预印本在https://doi.org/10.1016/j.trecan.2016.05.010(2016)。 13。 de Santis,S。等。 克服对激酶抑制剂的抗性:慢性髓样白血病的范例。 Oncotargets and Therapy Vol。 15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。 14。 Drilon,A。等。 下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。 癌症Discov 7,963–972(2017)。 15。 Schoepfer,J。等。 发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。 J Med Chem 61,8120–8135(2018)。 16。 OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。2 350–364预印本在https://doi.org/10.1016/j.trecan.2016.05.010(2016)。13。de Santis,S。等。 克服对激酶抑制剂的抗性:慢性髓样白血病的范例。 Oncotargets and Therapy Vol。 15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。 14。 Drilon,A。等。 下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。 癌症Discov 7,963–972(2017)。 15。 Schoepfer,J。等。 发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。 J Med Chem 61,8120–8135(2018)。 16。 OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。de Santis,S。等。克服对激酶抑制剂的抗性:慢性髓样白血病的范例。Oncotargets and Therapy Vol。15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。14。Drilon,A。等。下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。癌症Discov 7,963–972(2017)。15。Schoepfer,J。等。发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。J Med Chem 61,8120–8135(2018)。16。OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。OU,X.,Gao,G.,Habaz,I。A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。Medcomm,5(9),E694。https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。https://doi.org/10.1002/mco2.694(2024)。17。Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。Cohen,P。,Cross,D。&Jänne,P.A。伊马替尼20年后的激酶药物发现:进步和未来方向。nat Rev Drug Discov 20,551–569。https://doi.org/10.1038/s41573-021-00195-4(2021)。18。Leonetti,A。等。 在EGFR突变的非小细胞肺癌中对osimertinib的抗性机制。 英国癌症杂志卷。 121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。 19。 Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。Leonetti,A。等。在EGFR突变的非小细胞肺癌中对osimertinib的抗性机制。 英国癌症杂志卷。 121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。 19。 Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。在EGFR突变的非小细胞肺癌中对osimertinib的抗性机制。英国癌症杂志卷。 121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。 19。 Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。英国癌症杂志卷。121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。19。Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。Teuber,A。等。基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。nat Commun 15,(2024)。20。Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。肿瘤/血液学的批判性评论卷。171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。21。Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。生物医学和药物治疗卷。150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。
“分析已解决的积聚星系作为光晕调查的关键工具”(Arrakihs)任务将在每年的天空中成像50个平方度,直至前所未有的超低表面亮度(SB),同时在两个可见的频段中(HST F475X:380至630 NM和EUCLID NM和EUCLID)同时使用带(Euclid Y:920至1230 nm和Euclid J:1169至1590 nm)。这些图像将使我们能够解决λ-Cold暗物质(λCDM)宇宙学模型中的重大问题。尤其是,如果我们的宇宙中的暗物质与标准λCDM一样偏离了冷和无碰撞模型,那么预计卫星质量功能,卫星合并率以及在矮人星系周围出现的恒星流的普遍性将受到极大的抑制。由于广泛的视野调查,由于大气背景,很难从地面上实现到极低的SB限制,因此无法进行这些观察测试。相反,Arrakihs将在低地轨道上的迷你卫星上使用创新的双眼望远镜组件。这项调查将导致超低SB SB外层流图像的第一目录,以提供一个体积有限的和质量有限的星系样品,例如附近宇宙中的银河系。Arrakihs任务的定义和独特特征是,它将这些系统成像为前所未有的表面亮度,在31 mag /arcsecond 2中,在可见波长中分辨率为0.8 ARCSEC(FWHM),并在近距离Indrrrrrared中以1.25 Arcsec(FWHM)分辨率为30 mag /arcsecond 2。Arrakihs完全符合ESA的“宇宙视野”科学重点。Arrakihs任务利用具有高技术准备水平(TRL)的空间示威技术以非常低的风险姿势进入开发。首先,Arrakihs将使用双眼ISIM-170相机,该相机已经在太空中进行了验证,并成功证明了适用于SmallSats的最佳图像质量和空间分辨率。Arrakihs任务所需的检测器升级也基于适合飞行的技术。扩展的曝光将需要基于已经开发的相同技术(提高要求)的指向稳定升级,并为Euclid和Cheops任务开发了稳定升级。有效载荷和检测器冷却技术解决方案的热机械稳定性也是从已经为Euclid和Cheops任务开发的类似解决方案中借用的。ISIM-170摄像机可以安装在几个迷你 - 卫星平台上,这些平台很容易根据当前在低地轨道(LEO)中运行的成功版本进行调整。最后,由Arrakihs联盟进行的最新模拟对我们技术达到超低SB水平的能力和成功完成Arrakihs任务的科学目标所需的高空间分辨率的能力非常高度。特别是,Arrakihs将在“宇宙愿景”计划的核心的四个关键问题中提高我们的知识:“宇宙的基本物理定律是什么?”和“宇宙是如何产生的,它是什么?”此外,Arrakihs将补充新一代的巨型基础和空间观测站。JWST将在最高红移时观察星系形成和进化的最早阶段。鲁宾天文台,罗马和欧几里得将在中间和高红移时为数百万星系提供图像和光谱。arrakihs将通过开创了超低SB的附近宇宙的前所未有的系统探索,并以极佳的空间分辨率从可见的波长到红外波长来补充对遥远宇宙的这些深入的广泛观察。总而言之,ESA的F-Mession计划提供了一个独特的机会,可以在短时间内使用太空传播平台进行引人注目的科学,并具有负担得起的预算。因此,我们设计了具有三个定义特征的Arrakihs任务:1。Arrakihs使命是科学,其重点是对我们对现代宇宙中现有紧张局势的理解产生重大影响的巨大潜力。Arrakihs任务的核心 - 对未开发的超低SB宇宙的观察,只能由于由于大气而引起的基于地面的SB敏感性的局限性才能完成。由于该任务的科学目标需要在〜1 ARCSEC分辨率的非常宽的区域中实现非常低的SB,因此无需大型光圈摄像头。相反,最佳有效载荷是一台小型的多光谱摄像头,在广阔的视野中具有出色的光学质量。
Adamson, PT、Rutherfurd, ID、Peel, MC、Conlan, IA,2009 年。湄公河的水文学。引自:Cambell, I.(编辑),湄公河:国际河流流域的生物物理环境,第一版。Elsevier,第 53 – 76 页。Alcayaga, H.、Belleudy, P.、Jourdain, C.,2012 年。流域尺度上水电结构对河流扰动的形态学建模。引自:Mu ˜ noz, RM(编辑),河流流量 2012。河流水力学国际会议,第 537 – 544 页。 Arias, ME、Cochrane, TA、Kummu, M.、Lauri, H.、Holtgrieve, GW、Koponen, J.、Piman, T.,2014。水电和气候变化对东南亚最重要湿地生态生产力驱动因素的影响。生态模型 272,252 – 263。Ashouri, H.、Hsu, K.、Sorooshian, S.、Braithwaite, DK、Knapp, KR、Cecil, LD、Nelson, BR、Prat, OP,2015。PERSIANN-CDR:来自多卫星观测的每日降水气候数据记录,用于水文和气候研究。美国流星学会通报 96(1),69 – 83。 Ayugi, B., Tan, G., Gnitou, GT, Ojara, M., Ongoma, V., 2020. 罗斯贝中心区域气候模型对东非降水的历史评估和模拟。大气研究 232, 104705 。Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., Zhang, A., 2012. 中国北方海河流域径流量减少的归因:气候变化还是人类活动?水文地质学杂志 460 – 461, 117 – 129 。Bartkes, M., Brunner, G., Fleming, M., Faber, B., Slaughter, J., 2016. HEC-SSP 统计软件包用户手册 2.1 版。美国陆军工程兵团。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2018a。澜沧江梯级大坝对越南湄公河三角洲流态的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (4), 487 – 492。Binh, DV、Kantoush, S.、Mai, NP、Sumi, T.,2018b。越南湄公河三角洲在增加管制流量和河流退化的情况下的水位变化。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 871 – 876。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2019。湄公河流域的长期排放、水位、盐度浓度和降水。 Mendeley Data V3 。Binh, DV、Kantoush, S.、Sumi, T.,2020. 上游水坝导致越南湄公河三角洲长期排放和沉积物负荷的变化。地貌学 353,107011。Cook, BI、Bell, AR、Anchukaitis, KJ、Buckley, BM,2012。积雪和降水对湄公河下游流域旱季径流的影响。地球物理研究杂志 117,D16116。Dang, TD、Cochrane, TA、Arias, ME、Van, PDT、Vries, TTD,2016。湄公河洪泛区水利基础设施建设带来的水文变化。水文过程 30,3824 – 3838。 Darby, SE、Hackney, CR、Leyland, J.、Kummu, M.、Lauri, H.、Parsons, DR、Best, JL、Nicholas, AP、Aalto, R.,2016 年。热带气旋活动变化导致巨型三角洲河流沉积物供应减少。《自然》276 – 279。Eslami, S.,Hoekstra, P., Trung, NN, Kantoush, SA, Binh, DV, Dung, DD, Quang, TT, Vegt, MVD,2019。人为沉积物匮乏导致湄公河三角洲的潮汐放大和盐入侵。Sci. Rep. 9,18746。Fan, H., He, D., Wang, H.,2015。筑坝澜沧江-湄公河主流的环境后果:综述。Earth-Sci. Rev. 146,77 – 91。Ha, TP, Dieperink, C., Tri, VPD, Otter, HS, Hoekstra, P.,2018a。越南湄公河三角洲适应性淡水管理的治理条件。J. Hydrol. 557,116 – 127。 Ha, DT、Ouillon, S.、Vinh, GV,2018b。根据高频测量(2009 – 2016 年)得出的湄公河下游水和悬浮沉积物预算。水 10, 846 。Harris, I.、Osborn, TJ、Jones, P.、Lister, D.,2020。CRU TS 月度高分辨率网格化多元气候数据集第 4 版。科学数据。https://doi.org/10.1038/s41597-020-0453-3)。Hecht, JS、Lacombe, G.、Arias, ME、Dang, TD,2019。湄公河流域的水电大坝:其水文影响回顾。水文杂志 568, 285 – 300 。 Hoang, L.、Ngoc, TA、Maskey, S.,2016。一种用于估算越南湄公河三角洲 CERES-rice 模型参数的稳健参数方法。大田作物研究。196,98 – 111。Hoanh, CT、Jirayoot, K.、Lacomne, G.、Srunetr, V.,2010。气候变化和发展对湄公河流量制度的影响:首次评估 – 2009 年。MRC 技术论文第 29 号。湄公河委员会,老挝万象。Jordan, C.、Tiede, J.、Lojek, O.、Visscher, J.、Apel, H.、Nguyen, HQ、Quang, CNX、Schlurmann, T.,2019。重新审视湄公河三角洲的采砂 – 目前当地沉积物短缺的规模。 Rep. 9,17823 。 Kantoush, S.、Binh, DV、Sumi, T.、Trung, LV,2017。上游水电站大坝和气候变化对越南湄公河三角洲水动力学的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 73 (4),109 – 114 。Kendall, AMG,1938。一种新的秩相关性测量方法。Oxford J. 30,81 – 93 。Kiem, AS、Ishidaira, H.、Hapuarachchi, DP、Zhou, MC、Hirabayahi, Y.、Takeuchi, K.,2008。使用高分辨率日本气象局 (JMA) AGCM 模拟湄公河流域未来水文气候学。水文过程。22,1382 – 1394 。 Kingston, DG、Thompson, JR、Kite, G.,2010。湄公河流域气候变化预测排放量的不确定性。水文地球系统科学讨论。7,5991 – 6024。Kondolf, GM、Rubin, ZK、Minear, JT,2014。湄公河上的水坝:累积沉积物匮乏。水资源研究。50,5158 – 5169。 Kondolf, GM, Schmitt, RJP, Carling, P., Darby, S., Arias, M., Bizzi, S., Castelletti, A., Cochrane, TA, Gibson, S., Kummu, M., Oeurng, C., Rubin, Z., Wild, T., 2018. 湄公河沉积物预算的变化:大型河流流域的累积威胁和管理策略。环境科学总论 625, 114 – 134 。Kummu, M., Lu, XX, Wang, JJ, Varis, O., 2010.湄公河沿岸新兴水库的全流域泥沙截留效率。地貌学 119,181 – 197 。 Lauri, H.,De Moel, H.,Ward, PJ,R ¨ as ¨ anen, TA,Keskinen, M.,Kummu, M.,2012。湄公河水文未来变化:气候变化和水库运行对流量的影响。水文地球系统科学 16,4603 – 4619 。 Li, D.,Long, D.,Zhao, J.,Lu, H.,Hong, Y.,2017。湄公河流域观测到的流动状态变化。水文杂志 551,217 – 232 。 Lu, XX,Siew, RY,2006。过去几十年来湄公河下游的水流量和泥沙通量变化:中国大坝的可能影响。 Hydrol. Earth Syst. Sci. 10, 181 – 195 。 Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流变化观测结果:中国水坝的影响? Quat. Int. 336, 145 – 157 。 Mai, NP, Kantoush, S., Sumi, T., Thang, TD, Trung, LV, Binh, DV, 2018. 评估和适应水坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378 。 Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。
[1] Ryan S. Baker。2024。大数据和教育(第8版)。宾夕法尼亚州费城宾夕法尼亚大学。 [2] Ryan S. Baker和Aaron Hawn。2022。教育算法偏见。国际人工智能杂志教育杂志(2022),1-41。[3] Solon Barocas,Andrew D Selbst和Manish Raghavan。2020。反事实解释和主要原因背后的隐藏假设。在2020年公平,问责制和透明度会议的会议记录中。80–89。[4] Alex J Bowers和Xiaoliang Zhou。2019。曲线下的接收器操作特征(ROC)区域(AUC):一种评估教育结果预测指标准确性的诊断措施。受风险的学生教育杂志(JESPAR)24,1(2019),20-46。[5] Oscar Blessed Deho,Lin Liu,Jiuyong Li,Jixue Liu,Chen Zhan和Srecko Joksimovic。2024。过去!=未来:评估数据集漂移对学习分析模型的公平性的影响。IEEE学习技术交易(2024)。[6] Olga V Demler,Michael J Pencina和Ralph B D'Agostino Sr. 2012。滥用DELONG测试以比较嵌套模型的AUC。医学中的统计数据31,23(2012),2577–2587。[7] Batya Friedman和Helen Nissenbaum。1996。计算机系统中的偏差。信息系统(TOIS)的ACM交易14,3(1996),330–347。[8]乔什·加德纳,克里斯托弗·布鲁克斯和瑞安·贝克。2019。225–234。通过切片分析评估预测学生模型的公平性。在第9届学习分析与知识国际会议论文集。[9]LászlóA Jeni,Jeffrey F Cohn和Fernando de la Torre。2013。面对不平衡的数据:使用性能指标的建议。在2013年,俄亥俄州情感计算和智能互动会议上。IEEE,245–251。 [10] Weijie Jiang和Zachary a Pardos。 2021。 在学生等级预测中迈向公平和算法公平。 在2021年AAAI/ACM关于AI,伦理和社会的会议上。 608–617。 [11]RenéFKizilcec和Hansol Lee。 2022。 教育算法公平。 在教育中人工智能的伦理学中。 Routledge,174–202。 [12]JesúsFSalgado。 2018。 将正常曲线(AUC)下的面积转换为Cohen的D,Pearson的R PB,Ordds-Ratio和自然对数赔率比率:两个转换表。 欧洲心理学杂志适用于法律环境10,1(2018),35-47。 [13] Lele Sha,Mladen Rakovic,Alexander Whitelock-Wainwright,David Carroll,Victoria M Yew,Dragan Gasevic和Guanliang Chen。 2021。 在自动教育论坛帖子中评估算法公平性。 教育中的人工智能:第22届国际会议,AIED 2021,荷兰乌得勒支,6月14日至18日,2021年,第I部分。 Springer,381–394。 2024。 2023。 2018。IEEE,245–251。[10] Weijie Jiang和Zachary a Pardos。2021。在学生等级预测中迈向公平和算法公平。在2021年AAAI/ACM关于AI,伦理和社会的会议上。608–617。[11]RenéFKizilcec和Hansol Lee。2022。教育算法公平。在教育中人工智能的伦理学中。Routledge,174–202。[12]JesúsFSalgado。2018。将正常曲线(AUC)下的面积转换为Cohen的D,Pearson的R PB,Ordds-Ratio和自然对数赔率比率:两个转换表。欧洲心理学杂志适用于法律环境10,1(2018),35-47。[13] Lele Sha,Mladen Rakovic,Alexander Whitelock-Wainwright,David Carroll,Victoria M Yew,Dragan Gasevic和Guanliang Chen。2021。在自动教育论坛帖子中评估算法公平性。教育中的人工智能:第22届国际会议,AIED 2021,荷兰乌得勒支,6月14日至18日,2021年,第I部分。Springer,381–394。2024。2023。2018。[14]Valdemaršvábensk`Y,MélinaVerger,Maria Mercedes T Rodrigo,Clarence James G Monterozo,Ryan S Baker,Miguel Zenon Nicanor LeriasSaavedra,SébastienLallé和Atsushi Shimada。在预测菲律宾学生的学习成绩的模型中评估算法偏见。在第17届国际教育数据挖掘会议上(EDM 2024)。[15]MélinaVerger,SébastienLallé,FrançoisBouchet和Vanda Luengo。您的模型是“ MADD”吗?一种新型指标,用于评估预测学生模型的算法公平性。在第16届国际教育数据挖掘会议上(EDM 2023)。[16] Sahil Verma和Julia Rubin。公平定义解释了。在国际软件公平研讨会的会议记录中。1-7。[17] Zhen Xu,Joseph Olson,Nicole Pochinki,Zhijian Zheng和Renzhe Yu。2024。上下文很重要,但是如何?课程级别的性能和公平转移的相关性在预测模型转移中。在第14届学习分析和知识会议论文集。713–724。[18] Andres Felipe Zambrano,Jiayi Zhang和Ryan S Baker。2024。在贝叶斯知识追踪和粗心大意探测器上研究算法偏见。在第14届学习分析和知识会议论文集。349–359。
请在我们身份验证您的情况下等待...2016年贝叶斯分析学会的2016年奖项获得了这本著名的书,现在是第三版,被广泛认为是贝叶斯方法的主要文本,它因其实用和可访问的方法来分析数据和解决研究问题而受到赞扬。介绍先进的方法,文本具有从真实应用和研究中得出的众多工作示例,强调在本版中使用贝叶斯推断在实践中的实践中使用了四章,这些章节是关于非参数建模的四章,以及关于弱小的先验,避免边界的先验,跨越的先验,交叉竞争和预测信息的宣布,在三个方面使用的学生的最新章节:原则;对于研究生,它提出了贝叶斯建模和计算的有效当前方法;对于研究人员而言,它在应用统计数据中提供了各种贝叶斯方法的其他材料,包括数据集,选定练习的解决方案和软件说明,在书的网页上提供了一些研究人员,强调了在组织科学中使用贝叶斯方法进行数据分析的重要性。 但是,在采用贝叶斯方法时,仍然存在一些挑战和局限性。 例如,一个问题是贝叶斯方法需要指定先前的分布,这可能很困难,尤其是在使用复杂模型时。 Berger,J。2016年贝叶斯分析学会的2016年奖项获得了这本著名的书,现在是第三版,被广泛认为是贝叶斯方法的主要文本,它因其实用和可访问的方法来分析数据和解决研究问题而受到赞扬。介绍先进的方法,文本具有从真实应用和研究中得出的众多工作示例,强调在本版中使用贝叶斯推断在实践中的实践中使用了四章,这些章节是关于非参数建模的四章,以及关于弱小的先验,避免边界的先验,跨越的先验,交叉竞争和预测信息的宣布,在三个方面使用的学生的最新章节:原则;对于研究生,它提出了贝叶斯建模和计算的有效当前方法;对于研究人员而言,它在应用统计数据中提供了各种贝叶斯方法的其他材料,包括数据集,选定练习的解决方案和软件说明,在书的网页上提供了一些研究人员,强调了在组织科学中使用贝叶斯方法进行数据分析的重要性。但是,在采用贝叶斯方法时,仍然存在一些挑战和局限性。例如,一个问题是贝叶斯方法需要指定先前的分布,这可能很困难,尤其是在使用复杂模型时。Berger,J。一些研究人员提出了各种技术来提出专家判断以告知先前分布的技术。,例如,O'Hagan等。(2006)提供了先前启发的综合指南,包括技术和潜在的陷阱。其他研究的重点是开发使用贝叶斯先验的专家的信念的方法(例如,Johnson等,2010)。此外,还有各种可用的在线资源可以帮助进行贝叶斯分析。例如,Van de Schoot的在线统计培训提供了有关高级统计主题的教程和练习。总的来说,在组织科学中使用贝叶斯方法的使用变得越来越重要,但是它需要仔细考虑先前的分布和启发技术,以确保准确的结果。注意:我已经删除了一些特定的参考,并重点介绍了要点。让我知道您是否希望我保留更多原始文本!van de de Schoot-Hubeek,W.,Hoijtink,H.,Van de Schoot,R.,Zondervan-Zwijnenburg,M。&Lek,K。评估专家判断引发程序,以相关性和应用于贝叶斯分析。客观的贝叶斯分析:对主观贝叶斯分析的案例,批评和个人观点。Brown,L。D.经验贝叶斯和贝叶斯方法的现场测试,用于击球平均赛季预测。Candel,M。J.,Winkens,B。Monte Carlo研究在纵向设计中多级分析中的经验贝叶斯估计值的性能。Ibrahim,J。G.,Chen,M。H.,Gwon,Y。Ibrahim,J。G.,Chen,M。H.,Gwon,Y。darnieder,W。F.贝叶斯方法依赖数据依赖的先验。&Chen,F。权力先验:具有统计功率计算的理论和应用。Muthen,B。,Asparouhov,T。贝叶斯结构方程建模:使用数据依赖性先验对实体理论的更灵活的表示。Rietbergen,C.,Klugkist,I.,Janssen,K。J.,Moons,K。G.&Hoijtink,H。将历史数据纳入随机治疗试验的分析中,以及基于系统文献搜索和专家精力提示的知识的贝叶斯PTSD-Traigntory分析。van der Linden,W。J.在自适应测试中使用响应时间进行项目选择。Wasserman,L。使用数据依赖性先验对混合模型的渐近推断。请注意,我保留了您的消息的原始语言而不翻译。给定文本:释义此文本:数据(版本V1.0)。Zenodo(2020)。元素Google Scholar Chung,Y.,Gelman,A.,Rabe-Hesketh,S.,Liu,J。&Dorie,V。层次模型中协方差矩阵的点估计值较弱。J.教育。行为。Stat。40,136–157(2015)。Google Scholar Gelman,A.,Jakulin,A.,Pittau,M。G.&Su,Y.-S。 logistic和其他回归模型的弱信息默认分布。ann。应用。Stat。2,1360–1383(2008)。MathScinetMath Google Scholar Gelman,A.,Carlin,J。 B.,Stern,H。S.&Rubin,D。B. Bayesian数据分析卷。 2(Chapman&Hallcrc,2004)。Jeffreys,H。概率理论卷。 am。 Stat。2,1360–1383(2008)。MathScinetMath Google Scholar Gelman,A.,Carlin,J。B.,Stern,H。S.&Rubin,D。B. Bayesian数据分析卷。2(Chapman&Hallcrc,2004)。Jeffreys,H。概率理论卷。am。Stat。3(Clarendon,1961).Seaman III,J。W.,Seaman Jr,J。W.&Stamey,J。D.指定非信息先验的隐藏危险。66,77–84(2012).MathScinet Google Scholar Gelman,A。层次模型中方差参数的先前分布(Browne和Draper对文章的评论)。贝叶斯肛门。1,515–534(2006).MathScinet Math Google Scholar Lambert,P.C.,Sutton,A。J.,Burton,P.R.,Abrams,K。R.&Jones,D。R.含糊不清?对使用Winbugs在MCMC中使用模糊的先验分布的影响的仿真研究。Stat。Med。24,2401–2428(2005)。MathScinetGoogle Scholar Depaoli,S。在不同程度的类别分离的情况下,GMM中的混合类别恢复:频繁主义者与贝叶斯的估计。Psychol。方法18,186–219(2013)。Google Scholar DePaoli,S。&Van de Schoot,R。贝叶斯统计中的透明度和复制:WAMBS-CHECKLIST。Psychol。方法22,240(2017)。本文提供了有关如何在使用贝叶斯统计数据估算模型时如何检查各个点的分步指南。统计建模模型检查中的贝叶斯模型检查和鲁棒性是一种用于评估统计模型准确性的方法。它涉及使用各种诊断工具来检查模型的潜在问题,例如偏见或过度拟合。贝叶斯模型检查是传统模型检查的扩展,将先前的信念纳入分析中。再次。贝叶斯模型检查的关键应用之一是检测先前数据冲突。贝叶斯模型检查近年来变得越来越重要,因为它能够提供对统计模型的更细微理解的能力。它允许研究人员量化数据中包含的信息量,并评估其结论的可靠性。一些研究人员为贝叶斯模型检查技术的发展做出了重大贡献,包括Nott等,Evans和Moshonov,Young and Pettit,Kass和Raftery,Bousquet,Veen和Stoel,以及Nott等。这些研究人员介绍了各种诊断工具和评估先前数据协议和冲突的标准。这会发生在同一数据集的先前信念和数据之间存在差异时。像埃文斯(Evans),莫索诺夫(Moshonov)和杨(Young)这样的研究人员已经开发了使用诸如后验预测分布等指标来量化这一冲突的方法。贝叶斯模型检查也已应用于贝叶斯模型中的可能性推断。像Gelman,Simpson和Betancourt这样的研究人员强调了理解表达先前信念的上下文的重要性。除了其方法论上的意义外,贝叶斯模型检查还在社会科学,医学和金融等领域还采用了实际应用。它可以通过确定统计模型的潜在问题来帮助研究人员和政策制定者做出更明智的决定。在此处给定文章,此处28,319–339(2013).MathScinet Math Google Scholar Rubin,D。B. Bayesian具有合理的频率计算,适用于应用的统计学家。ann。Stat。J.am。12,1151–1172(1984)。Mathscinet Math Google Scholar Gelfand,A。E.&Smith,A。F. M.基于采样的方法来计算边际密度。 Stat。 合作。 85,398–409(1990)。 这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。 ifna(1991)。 3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。 4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。 ieee trans。 模式肛门。 马赫。 Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。12,1151–1172(1984)。Mathscinet Math Google Scholar Gelfand,A。E.&Smith,A。F. M.基于采样的方法来计算边际密度。Stat。合作。85,398–409(1990)。 这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。 ifna(1991)。 3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。 4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。 ieee trans。 模式肛门。 马赫。 Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。85,398–409(1990)。这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。ifna(1991)。3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。ieee trans。模式肛门。马赫。Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。Intell。6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。J. Chem。物理。21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J.&Roweth,D。Hybrid Monte Carlo。物理。Lett。 J. am。 Stat。 合作。Lett。J.am。Stat。合作。b 195,216–222(1987)。&Wong,W。H.通过数据增强计算后验分布。82,528–540(1987)。 本文解释了当直接计算感兴趣参数的后验密度时,如何使用数据扩展。马尔可夫链蒙特卡洛手册(CRC,2011年)。 本书对MCMC及其在许多不同的应用中的使用进行了全面评论。Gelman,A。Burn-in MCMC,为什么我们更喜欢“热身”一词。 元建模,因果推理和社会科学(2017)。Gelman,A。 &Rubin,D。B. 使用多个序列从迭代模拟中推断。 Stat。 SCI。 7,457–511(1992)。 一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.82,528–540(1987)。本文解释了当直接计算感兴趣参数的后验密度时,如何使用数据扩展。马尔可夫链蒙特卡洛手册(CRC,2011年)。本书对MCMC及其在许多不同的应用中的使用进行了全面评论。Gelman,A。Burn-in MCMC,为什么我们更喜欢“热身”一词。元建模,因果推理和社会科学(2017)。Gelman,A。&Rubin,D。B.使用多个序列从迭代模拟中推断。Stat。SCI。 7,457–511(1992)。 一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.SCI。7,457–511(1992)。一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.一般方法用于监测迭代模拟的收敛性。J. Comput。图。Stat。7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。马尔可夫链蒙特卡洛在实践中57,45-58(1996)。(2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。(2017)。关键参考包括Minka(2013),Hoffman等。(2015),Liang等。 Q.(2015),Liang等。Q.Q.新方法利用排序差异,折叠和本地化技术来增强\(\ hat {r} \)的准确性。此外,本综述强调了贝叶斯建模中变异推理方法的重要性,尤其是随机变体,这些变体是大型数据集或复杂模型的流行近似贝叶斯推理方法的基础。(2013),Kingma和BA(2014),Li等。 (2008),Forte等。 (2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。 (2014)。 用于回归分析中的稀疏信号。 该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。 该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。 其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。 L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J. &Friston,K。J. Neuroimage(2005)。 咨询。 临床。(2013),Kingma和BA(2014),Li等。(2008),Forte等。 (2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。 (2014)。 用于回归分析中的稀疏信号。 该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。 该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。 其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。 L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J. &Friston,K。J. Neuroimage(2005)。 咨询。 临床。(2008),Forte等。(2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。(2014)。用于回归分析中的稀疏信号。该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J.&Friston,K。J. Neuroimage(2005)。咨询。临床。Google Scholar Smith,M.,Pütz,B。,Auer,D。&Fahrmeir,L。Neuroimage(2003)中还讨论了通过空间贝叶斯变量选择评估大脑活动。Google Scholar此外,检查了Zhang,L。,Guindani,M.,Versace,F。&Vannucci,M。Neuroimage(2014)的时空非参数贝叶斯变量选择模型用于聚类相关时间课程。判断中信息处理的研究采用了各种方法,如Bolt等人的研究中所见,他们探讨了两种戒烟剂在联合使用的有效性,理由是J.Psychol。80,54–65,2012)。在类似的脉中,Billari等。基于贝叶斯范式内的专家评估(人口统计学51,1933–1954,2014)开发了随机人群预测模型。其他研究已经深入研究了暂时的生活变化及其对离婚时间的影响(Fallesen&Breen,人口统计学53,1377-1398,2016)。同时,Hansford等人。分析了美国律师将军在最高法院的政策领域的位置(Pres。螺柱。49,855–869,2019)。此外,研究重点是使用健康行为综合模型来预测限制“自由糖”消耗(Phipps等人,食欲150,104668,2020)。此外,研究还将贝叶斯统计数据引入了健康心理学,并强调了其在该领域的潜在好处(Depaoli等人,Health Psychol。修订版11,248–264,2017)。Psychol。Gen. 142,573–603,2013; Lee,M。D.,J。 数学。Gen. 142,573–603,2013; Lee,M。D.,J。数学。贝叶斯估计的应用已显示在各种情况下取代传统的t检验,包括认知建模和生态研究(Kruschke,J。Exp。Psychol。55,1-7,2011)。此外,层次结构的贝叶斯模型已在生态学中用于建模种群动态和推断环境参数(Royle&Dorazio,生态学的分层建模和推断)。通过包括Gimenez等人在内的各种研究人员的工作进一步开发了这种方法。(在标记人群中建模的人口统计过程中,3)和King等。(贝叶斯分析人群生态学)。研究还研究了贝叶斯方法在生态学中的使用,例如使用汉密尔顿蒙特卡洛(Monnahan等人,方法ECOL。Evol。8,339–348,2017)。贝叶斯对生态学的重要性的重要性已被埃里森(Elison)等研究人员(ecol。Lett。 7,509–520,2004)。 最后,已经探索了通过设计启发将专家意见整合到贝叶斯统计模型中,突出了其为先验知识提供信息并提高模型准确性的潜力(Choy等,生态学90,265-277,2009)。 也已经讨论了有关使用贝叶斯评估诊断人群下降的诊断人群下降的方法(King等,J。R. Stat。 Soc。 系列C 57,609–632,2008)。 在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。 - Dennis等。 -McClintock等。Lett。7,509–520,2004)。最后,已经探索了通过设计启发将专家意见整合到贝叶斯统计模型中,突出了其为先验知识提供信息并提高模型准确性的潜力(Choy等,生态学90,265-277,2009)。也已经讨论了有关使用贝叶斯评估诊断人群下降的诊断人群下降的方法(King等,J。R. Stat。Soc。系列C 57,609–632,2008)。 在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。 - Dennis等。 -McClintock等。系列C 57,609–632,2008)。在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。- Dennis等。-McClintock等。总而言之,对判断中信息处理的研究以及贝叶斯统计在各个领域的应用,使人们对这些概念及其对决策和人口建模的影响有了更深入的了解。这些作品涵盖了种群建模的各个方面,包括贝叶斯估计,综合人群模型和遗传关联研究。关键论文包括: - King and Brooks(2008)关于贝叶斯对具有异质性和模型不确定性的封闭种群的估计。(2006)使用生态数据估计密度依赖性,过程噪声和观察误差。(2012)基于多阶段随机步行开发了一个一般的离散时间框架,用于动物运动。-Aeberhard等。(2018)对渔业科学的州空间模型进行了综述。其他值得注意的贡献包括: - Isaac等。(2020)讨论了大规模物种分布模型的数据集成。-McClintock等。(2020)提出了一种使用隐藏的马尔可夫模型来发现生态状态动力学的方法。- King(2014)审查了统计生态及其应用。- Andrieu等。(2010)引入了粒子马尔可夫链蒙特卡洛方法,用于复杂的种群建模。这些研究表明,从人口生存能力分析到遗传关联研究,在理解生态系统中采用的统计技术的多样性,强调了该领域数据整合和高级建模方法的重要性。提出一种利用转移学习以提高数据质量的方法。基因组学,统计和机器学习的交集在理解复杂的生物系统中变得越来越重要。最近的研究探索了多摩智数据集的整合,以发现对人类健康和疾病的新见解。由Argelaguet等人建立了整合多派数据集的框架,该框架采用贝叶斯方法来识别生物学过程的关键因素。该方法已应用于包括单细胞转录组学在内的各个领域,如Yau和Campbell的工作所示,他们使用贝叶斯统计学习来分析大型数据集。研究的另一个领域涉及在英国生物库中对跨树木结构的常规医疗数据进行遗传关联的分析。诸如Stuart和Satija的研究表明,将单细胞分析与基因组学相结合以揭示有关复杂生物系统的新信息的潜力。深层生成模型的发展也促进了单细胞转录组学的进步,如Lopez等人的工作所证明的那样,后者应用了深层生成模型来分析大型数据集。此外,与Wang等人一起,对单细胞转录组学中数据降解和转移学习的研究已显示出令人鼓舞的结果。最近的研究还强调了科学研究中可重复性和公平原则(可访问,可互操作和可重复使用)的重要性。这包括诸如癌症基因组图集和Dryad&Zenodo之类的举措,旨在促进开放研究实践。提出了功能性变分贝叶斯神经网络。机器学习技术(包括变异自动编码器)的应用也在理解复杂的生物系统方面变得越来越重要。正如Paszke等人的评论中所述,变化自动编码器为将基因组学和统计数据与深层生成模型的整合提供了有希望的方法。总体而言,多摩智数据集,机器学习技术和统计分析的进步的整合已经开辟了新的途径,以理解复杂的生物系统并揭示了对人类健康和疾病的新见解。概率建模的最新进展导致了几种将深度学习与贝叶斯推论相结合的技术的发展。该领域的一个关键概念是变异自动编码器(VAE),它通过将其映射到较低维度的空间中来了解输入数据的概率分布。Hinton等人引入的Beta-Vae框架将VAE限制为学习基本的视觉概念。研究人员还探索了贝叶斯方法在神经网络中的应用,例如高斯过程和周期性随机梯度MCMC。例如,尼尔在神经网络上的贝叶斯学习方面的工作突出了神经网络与高斯过程之间的联系。此外,已证明将深层合奏用于预测不确定性估计在各种任务中都是有效的。最近的预印象提出了新的新技术,包括功能变分贝叶斯神经网络和细心的神经过程。后者使用注意机制从输入数据中学习相关特征。res。另一项研究的重点是开发更可扩展和可解释的模型,例如标准化流量和周期性随机梯度MCMC。该领域在理解深度学习的理论基础上,包括神经网络与高斯过程之间的联系,也看到了重大进展。Mackay和Williams的作品为贝叶斯倒退网络提供了一个实用的框架,而Sun等人。总的来说,这些进步有助于我们理解概率建模及其在深度学习中的应用。Hoffman,M。D.&Gelman,A。 No-U-Turn采样器:在汉密尔顿蒙特卡洛(Monte Carlo)的自适应设置路径长度。 J. Mach。 学习。 15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。Hoffman,M。D.&Gelman,A。No-U-Turn采样器:在汉密尔顿蒙特卡洛(Monte Carlo)的自适应设置路径长度。J. Mach。 学习。 15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。J. Mach。学习。15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。Stat。Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。J.am。Stat。合作。93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。&Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。J. R. Stat。Soc。系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。Stat。计算。10,325–337(2000)。Google Scholar Ntzoufras,I。使用Winbugs Vol。698(Wiley,2011).Lunn,D。J.,Thomas,A.,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。Stat。计算。10,325–337(2000)。Spiegelhalter,D.,Thomas,A。,Best,N。&Lunn,D。OpenBugs用户手册版本3.2.3。OpenBugs(2014).Plummer,M。Jags:使用Gibbs采样的贝叶斯图形模型分析程序。proc。第三国际统计计算的国际研讨会124,1-10(2003)。Google Scholar Plummer,M。Rjags:使用MCMC的贝叶斯图形模型。r软件包版本,4(6)(2016).Salvatier,J.,Wiecki,T。V.&Fonnesbeck,C。使用Pymc3在Python中进行概率编程。peerj Comput。SCI。 2,E55(2016)。 Google Scholar de Valpine,P。等。 与模型的编程:编写敏捷的通用模型结构的统计算法。 J. Comput。 图。SCI。2,E55(2016)。 Google Scholar de Valpine,P。等。 与模型的编程:编写敏捷的通用模型结构的统计算法。 J. Comput。 图。2,E55(2016)。Google Scholar de Valpine,P。等。与模型的编程:编写敏捷的通用模型结构的统计算法。J. Comput。图。Stat.s 26, 403–413 (2017).MathSciNet Google Scholar Bayesian analysis software JASP version 0.14 available for computer use (2020) Lindgren F & Rue H used R-INLA for Bayesian spatial modeling in a Stats journal article (2015) Vanhatalo et al's GPstuff allowed Bayesian Gaussian process modeling with Machine Learning Res articles (2013) Blaxter gave research methods in他的2010年McGraw-Hill教育书《如何进行研究》 BetanCourt在Github上创建了一个原则上的贝叶斯工作流程,主张最佳实践(2020)Veen&Schoot使用了对英超联赛数据的后验预测检查,并在OSF(2020年)上发布了它,并在Kramer&Bosman(2020)Kramer&Bosman在Kramer&Bosman在Kramersship Sumpership Summerschool inter Smixship Summershood prosentie in Utrech Torne in utrecht in of to inty介绍(2019年),UTRECHINE(2019年)(2019年)(2019年)(2019年)(2019年)(2019年)(2019年) Acta Math匈牙利文章(1955)Lesaffre&Lawson在2012年Wiley Publication撰写了一种新的公理概率理论(1955年),Hoijtink等人使用了贝叶斯评估,用于认知诊断评估,发表在Psych Methods In In In Psych Methods Journal(2014)
迁移流离失所惠特尼铝数分钟出租车特立尼达彩虹罗伯托感动观察观众责怪莱茵约翰偷窃封闭的国家增加免疫自由式wwe反对回合注射苔藓菲利克斯赫尔曼消耗致命场景位置dos静态。伍斯特iTunes穆罕默德温布尔登das超过温泉穆斯林假宣传半径供应商望远镜进步世仇范围弗格森酋长社会学弗莱明砂岩风暴莫妮卡横向下沉更难马车誓言起重机尖峰事故林吉特白天广泛子公司卡尔教授布雷迪准将恐慌造船厂规范台北精制先知选美奉献纳斯卡连续性雪松滑雪德雷克水下交付坐标受体反射杰弗里安德里亚听众修道院。牌匾结合偏见温斯顿纸浆碰撞马克卡牢固固定声明 at&t 地平线德黑兰向上隧道斗争形状库马尔清洁谈判 oz 接受西藏哈萨克斯坦成功贝克商店匹配@二进制米德兰兹贝德福德废弃特蕾西玻利维亚停止多彩半决赛加州大学洛杉矶分校红人新娘洪水发行随后农民排名过剩埋葬财政大气动机迷你学术麦克斯韦捷克斯洛伐克米奇托莱多反馈意识形态运作传奇。精确君士坦丁灰烬核探索游艇解决仙女集体动乱警报天文学少数民族种族灭绝人质加尔各答选择性半球神双边码头生态蜂蜜银行绝对烧毁吉隆坡现象