SCIENTIFIC AND TECHNICAL SUBCOMMITTEE MEMBERS AND CO-AUTHORS (ALPHABETICALLY): Linda Bacon 4 , Hannah Baranes 5 , Andrew Barton 6 , Sean Birkel 7 , Damian Brady 8 , Lily Calderwood 9 , Gail Carlson 10 , Alexandra Contosta 11 , Amanda Cross 12 , Adam Daigneault 19 , Phillip deMaynadier 14 , Muhammad Drammeh 15 , Susan Elias 16 , Alison Gardner 17 , Andrew Goode 8 , Caleb Goossen 18 , Daniel Hayes 19 , Glenn Hodgkins 20 , Cindy Isenhour 21 , Andrew Johnson 4 , Eileen Johnson 22 , Joe Kelley 7 , Mark King 4 , Glen Koehler 9 , Jason Lilley 9 , Rebecca Lincoln 23 , Pamela Lombard 20 , Bradfield Lyon 7 ,凯瑟琳·米尔斯(Katherine Mills)5,托德·奥特尔(Todd Ontl 24),尼科尔(Nichole)价格25,克里斯汀·普莱(Kristen Puryear)26,达伦·兰科(Darren Ranco)27,尼古拉斯(Nicholas)记录25,乔纳森·鲁宾(Jonathan Rubin)28,乔纳森·鲁宾28,雷切尔·夏特曼29,彼得·斯洛文斯基2,彼得·斯洛文斯基2,艾丽莎斯·苏西州2,艾丽莎·苏西州30,萨利·斯托克威尔31,萨利·斯托克威尔31,卡纳·托克纳加5号
Akio Enders康奈尔大学;国际生物炭倡议艾里森·弗林全球绿色能源解决方案公司布鲁斯·斯普林斯汀普拉斯县空气污染控制区丹尼尔·桑切斯加州大学,加利福尼亚大学,伯克利 /碳直接戴维·莫雷尔·索诺尔·索诺玛生态中心汉内斯·霍恩斯·埃特·南极南极洪堡 /沙特兹能源研究中心马特·拉姆洛世界资源研究所梅利莎·莱昂·盖卡(Melissa Leung GecaAkio Enders康奈尔大学;国际生物炭倡议艾里森·弗林全球绿色能源解决方案公司布鲁斯·斯普林斯汀普拉斯县空气污染控制区丹尼尔·桑切斯加州大学,加利福尼亚大学,伯克利 /碳直接戴维·莫雷尔·索诺尔·索诺玛生态中心汉内斯·霍恩斯·埃特·南极南极洪堡 /沙特兹能源研究中心马特·拉姆洛世界资源研究所梅利莎·莱昂·盖卡(Melissa Leung Geca
散射转换是最近用于研究高度非高斯过程的新型摘要统计数据,这对于天体物理研究而言非常有前途。特别是,它们允许从有限数量的数据中构建复杂非线性字段的生成模型,并已用作新的统计组件分离算法的基础。在即将进行的宇宙学调查的背景下,例如用于宇宙微波背景极化的Litebird或Vera C. rubin天文台和欧几里德空间望远镜,用于研究宇宙的大规模结构,将这些工具扩展到球形数据。在这项工作中,我们在球体上开发了散射转换,并着重于建造几个天体物理领域的最大透镜生成模型。我们从单个目标场构建了同质天体物理和宇宙学领域的生成模型,其样品是使用共同统计量(功率谱,像素概率密度函数和Minkowski功能)定量比较的。我们的采样字段在统计和视觉上都与目标字段吻合。因此,我们得出的结论是,这些生成模型为未来的天体物理和宇宙学研究开辟了广泛的新应用,尤其是那些很少有模拟数据的新应用。
鉴于在小规模队列中解决这一研究问题的内在挑战,统计分析旨在尽可能排除分析偏差,包括过度采样偏差。为了严格起见,作者不得不将他们的定量 EEG 分析限制在一些最被接受和最成熟的参数上,从而省略了其他参数;希望这些参数能在未来的研究中进行测试。同样,他们也没有探索其他测量连接的方式,例如功能性 MRI 或氟脱氧葡萄糖 PET。然而,这些技术不太适合常规临床使用,而且通常耗费太多资源,尤其是在重症监护的情况下。Rubin 等人在这样一个研究不足的患者队列中研究麻醉撤机过程的努力值得祝贺。他们的研究结果有可能通过提出标准来改善结果,以尽量缩短药物诱导昏迷的持续时间来治疗难治性癫痫持续状态。虽然对于许多机构来说,常规实施这种复杂的定量脑电图分析可能仍然具有挑战性,但不断提高的计算能力将促进其引入。应用于“大脑电图数据”的机器学习算法可能会识别出更多可靠的预测因子,可用于指导
散射转换是最近用于研究高度非高斯过程的新型摘要统计数据,这对于天体物理研究而言非常有前途。特别是,它们允许从有限数量的数据中构建复杂非线性字段的生成模型,并已用作新的统计组件分离算法的基础。在即将进行的宇宙学调查的背景下,例如用于宇宙微波背景极化的Litebird或Vera C. rubin天文台和欧几里德空间望远镜,用于研究宇宙的大规模结构,将这些工具扩展到球形数据。在这项工作中,我们在球体上开发了散射转换,并着重于建造几个天体物理领域的最大透镜生成模型。我们从单个目标场构建了同质天体物理和宇宙学领域的遗传模型,它们的样品是使用Common Statistics(功率谱,像素概率密度函数和Minkowski功能)定量比较的。我们的采样字段在统计和视觉上都与目标字段吻合。因此,我们得出的结论是,这些生成模型为未来的天体物理和宇宙学研究开辟了广泛的新应用,尤其是那些很少有模拟数据的新应用。
Gratacap, RL、Wargelius, A.、Edvardsen, RD 和 Houston, RD 2019。基因组编辑在改善水产养殖育种和产量方面的潜力。遗传学趋势,35(9):672–684。Kishimoto, K.、Washio, Y.、Yoshiura, Y.、Toyada, A.、Ueno, T.、Fukuyama, H.、Kato, K. 和 Kinoshita, M. 2018。通过 CRISPR/Cas9 基因组编辑培育出骨骼肌质量增加、体长缩短的红鲷品种 Pagrus major。水产养殖,495:415–427。Norris, A. 2017。基因组学在鲑鱼水产养殖育种计划中的应用:谁知道基因组革命将把我们带向何方?海洋基因组学,36:13–15。 Pavelin, J.、Jin, YH、Gratacap, RL、Taggart, JB、Hamilton, A.、Verner-Jeffreys, DW、Paley, RK、Rubin, C.、Bishop, SC、Bron, JE、Robledo, D. 和 Houston, R. 2021. nedd-8 活化酶基因是大西洋鲑对传染性胰腺坏死病毒具有遗传抗性的基础。基因组学,113(6): 3842–3850。
皮特·史密斯1 *,史蒂文·J·戴维斯2,菲利克斯·克鲁特齐格3,4,萨宾·福斯3,扬·米克斯3,5,6,贝诺伊特·加布里埃尔7,8,埃茨希·盖托9,埃茨西·盖托9,罗伯特·杰克逊·杰克逊·杰克逊·韦特尔·韦特尔·范·沃里恩12,13 , David 15 , Glen Peters 19 , Robbie Andrew 19 , Volker Krestha 20 , Pierre Friedlingstein 21 , Thomas Gasser 16,22 , Arnulf Grübler 15 , Wolfgang K. Heidu 23 , Matthiaas Jonas 15 , Chris D. Jones 24 , Florian Kraxner , José Roberto Morera 26 , Nebojsa Nakcenovic 15 , Michael Obeersteiner 15 ,Anand Patwardhan 27,Mathis Roner 15,Ed Rubin 28,Ayyob Sharifi 29,AsbjørnTorvanger 19,Yoshiki Yamagata 30,Jae Edmonds和Cho Yonssung 32 32 32
通讯作者:杰西卡·乔(Jessica Jou),俄勒冈州妇科肿瘤学的俄勒冈州健康与科学司,3181 SW Sam Jackson Park Road,L466,Portland,或97239。Jouj@ohsu.edu。J. Jou,S。Kato,R.N。 Eskander和R. Kurzrock对本文也同样贡献。 作者的贡献J. Jou:概念化,正式分析,调查,写作 - 原始草案。 S. H。Miyashita:正式分析,调查,写作 - 审查和编辑。 K. Thangathurai:正式分析,调查,写作 - 审查和编辑。 S. Pabla:数据策划,写作 - 审查和编辑。 P. Depietro:数据策划,写作 - 审查和编辑。 M.K. nesline:数据策划,写作 - 浏览和编辑。 J.M. conroy:数据策划,写作 - 审查和编辑。 E.鲁宾:正式分析,监督,写作 - 审查和编辑。 R.N. Eskander:监督,调查,写作 - 审查和编辑。 R. Kurzrock:概念化,资源,监督,调查,写作 - 评论和编辑。J. Jou,S。Kato,R.N。Eskander和R. Kurzrock对本文也同样贡献。作者的贡献J. Jou:概念化,正式分析,调查,写作 - 原始草案。S.H。Miyashita:正式分析,调查,写作 - 审查和编辑。K. Thangathurai:正式分析,调查,写作 - 审查和编辑。S. Pabla:数据策划,写作 - 审查和编辑。P. Depietro:数据策划,写作 - 审查和编辑。M.K. nesline:数据策划,写作 - 浏览和编辑。 J.M. conroy:数据策划,写作 - 审查和编辑。 E.鲁宾:正式分析,监督,写作 - 审查和编辑。 R.N. Eskander:监督,调查,写作 - 审查和编辑。 R. Kurzrock:概念化,资源,监督,调查,写作 - 评论和编辑。M.K.nesline:数据策划,写作 - 浏览和编辑。J.M.conroy:数据策划,写作 - 审查和编辑。E.鲁宾:正式分析,监督,写作 - 审查和编辑。R.N. Eskander:监督,调查,写作 - 审查和编辑。 R. Kurzrock:概念化,资源,监督,调查,写作 - 评论和编辑。R.N.Eskander:监督,调查,写作 - 审查和编辑。R. Kurzrock:概念化,资源,监督,调查,写作 - 评论和编辑。
在当天的第一个小组讨论中,我们了解到对手的打击和 IAMD 方法将如何挑战我们自己的作战概念。以色列导弹防御组织前主任 Uzi Rubin 博士认为,直到最近,威胁才可以根据高度和速度进行整齐的分类。例如,高空飞行的快速目标(如弹道导弹)和低空飞行的目标(如巡航导弹)之间存在明显区别。这反过来又促成了一种基于将威胁细分为不同层级的技术方法来解决问题,不同的系统可以拦截不同层级的威胁。这种模式在几个方面受到了挑战。首先,高超音速滑翔飞行器 (HGV) 和俄罗斯 9M723 等准弹道导弹等能力的出现,它们都以极高的速度在不同高度飞行。尤其是高超音速滑翔飞行器,由于其速度和极高的机动性,对旧模式构成了挑战。此外,无人机等低空威胁正变得越来越复杂,可以配备一系列推进系统。结果就是低空空间更加拥挤,无人机和巡航导弹在其中协同作战。这些转变的累积效应极大地挑战了基于构建特定系统以应对特定挑战的防空和导弹防御模式。
在许多科学领域中,研究人员面临评估复杂统计模型的挑战,即可能的计算函数在计算上是棘手的,或者非常昂贵的计算。这导致了无似然推理方法的发展和日益普及,这为参数估计和模型比较提供了强大的替代方案。这些方法利用模拟,通过观察到的数据的比较来推断与模型在各种参数设置下产生的模拟结果的比较。在贝叶斯推论中,这些包括近似贝叶斯计算(Rubin,1984; Pritchard et al。,1999; Sisson等。,2018年),贝叶斯合成的可能性(Wood,2010; Price等,2018年),神经可能和后验估计(Rezende and Mohamed,2015年; Papamakarios,Sterratt和Murray,2019年)。在频繁的环境中,在Gourieroux,Monfort and Renault(1993)的基础工作之后,近年来才看到无可能无可能推理的进步(Masserano等人。,2022; Xie and Wang,2022年; Dalmasso等。,2024)。本研究的重点是频繁推断,针对基于模拟的模型和非标准的规律性条件的校准置信区间和区域的构建。建议的方法提供了统一的