(3) 在起落架和襟翼处于任何位置时,以 1.2 VSI 的垂直、稳定滑行,并且在功率条件下不超过最大连续功率的 50%,当滑行角增加到适合该类型飞机的最大值时,副翼和方向舵的控制运动和控制力必须稳定增加(但不一定按恒定比例增加)。在较大的滑行角下,直到使用全方向舵或副翼控制或获得 JAR-VLA 143 中包含的控制力极限为止,方向舵踏板力不得反转。滑行必须有足够的倾斜度以保持恒定的航向。快速进入最大滑行或从最大滑行恢复不得导致失控的飞行特性。 (b) 双控制(或简化控制)飞机。双控飞机的稳定性要求如下:飞机的方向稳定性必须通过以下方式来证明:在每种配置下,飞机都可以快速地从一个方向的 45 英寸倾斜度滑向相反方向的 4 5 度倾斜度,而不会出现危险的滑行特性。飞机的横向稳定性必须通过以下方式来证明:当放弃控制两分钟时,飞机不会呈现危险的姿态或速度。这必须在适度平稳的空气中进行,飞机以 0-9 VH 或 Vc(取较低者)进行直线平飞,襟翼和起落架收起,重心后移。
1.本章规定适用于流线型断面、普通型单板舵及为增加舵力而作特殊布置的一些增强型舵,分为下列型式: (1) A型:有上、下枢轴的舵。(见图4.1.1 A型) (2) B型:有颈轴承和下枢轴的舵。(见图4.1.1 B型) (3) C型:颈轴承下无轴承的舵。(见图4.1.1 C型) (4) D型:有颈轴承和枢轴的海员型舵,其下端固定。(见图 4.1.1 D 型) (5)E 型:双舵舵销,下端固定的海员型舵。(见图 4.1.1 E 型) 2.本章适用于钢制舵。
干舷时船舶长度()为从龙骨顶端量起的85%最小型深水线处首柱前侧至尾端船板后侧的长度(以米为单位)的96%,或为该水线上首柱前侧至舵杆轴线的长度(以米为单位),取较大者。但是,当首柱轮廓在85%最小型深水线以上凹陷时,该长度的前端点应取首柱轮廓最后点在该水线上的垂直投影。对于无舵杆的船舶,干舷船舶长度为从船首前侧到船尾壳板后侧测量的长度的 96%,该长度位于从龙骨顶部测量的最小型深的 85% 处的水线上。测量此长度的水线应与 108 中定义的载重线平行。
干舷船舶长度 ( ) 为从龙骨顶部测量的最小型深 85% 处的水线上从船首柱前侧到尾端船板后侧测量的长度(以米为单位)的 96%,或为从船首柱前侧到该水线上舵杆轴线测量的长度(以米为单位),以较大者为准。但是,如果船首轮廓在 85% 最小型深的水线以上凹陷,则该长度的前端点应取船首轮廓最后点在此水线的垂直投影。对于无舵杆的船舶,干舷船舶长度为从船首前侧到尾端壳板后侧在 85% 最小型深的水线上从龙骨顶部测量的长度的 96%。测量此长度的水线应与 110 中定义的载重线平行。
1.本章规定适用于流线型断面、普通型单板舵和为增加舵力而作特殊布置的某些增强型舵,分为下列型式: (1) A型:有上、下枢轴的舵。(见图4.1.1 A型) (2) B型:有颈轴承和下枢轴的舵。(见图4.1.1 B型) (3) C型:颈轴承下无轴承的舵。(见图4.1.1 C型) (4) D型:有颈轴承和枢轴的海员型舵,其下端固定。(见图 4.1.1 D 型) (5)E 型:双舵舵销,下端固定的海员型舵。(见图 4.1.1 E 型) 2.本章适用于钢制舵。
功能描述管理模式独立:在此模式下,每个设备都会单独配置和管理。它在几个设备或网站有限的网站和基本功能的情况下可能很有用。云:在此模式下,设备是从托管在云中的中央控制器配置和管理的。与独立模式相比,它提供了更多的功能。操作模式桥:在此模式下,设备通过以太网电缆连接到网络,并扩展了无线上的覆盖范围。路由器:在此模式下,该设备使用DHCP / static IP / PPPOE协议直接连接到Internet服务提供商,并通过有线或无线网络与用户共享Internet访问。Quantum舵量子舵是一个云托管控制器,可用于配置,管理和监视与之关联的设备。可以从https://rudder.qntmnet.com访问它
1. 事实信息.................... ... ................. ... ................. ... ................. ... ....................................................................................................................................................................................................................................................... 6 1.5.4 空中交通管制人员 ....................................................................................................................................................................................................................................... 7 1.6 飞机信息 ....................................................................................................................................................................................................................................................... 7 1.6 飞机信息 ....................................................................................................................................................................................................................................................................... 7 ................................................................................................................................................................. 7 1.6.1 一般....................................................................................................................................................................
Alayne K. EDWARDS 1、Steve SAVAGE 2、Paul L. HUNGLER 1 和 Thomas W. KRAUSE 3 1 加拿大皇家军事学院化学与化学工程系,加拿大安大略省金斯顿;电子邮件:Alayne.Edwards@forces.gc.ca,电子邮件:Paul.Hungler@rmc.ca 2 质量工程测试机构,45 Sacre-Coeur Blvd. 加蒂诺,加拿大;电子邮件:Steve.Savage.SJL@forces.gc.ca 3 加拿大皇家军事学院物理系,加拿大安大略省金斯顿;传真 001 613 541 6040;电话:+1 613 541 6000 x 6415;传真:+ 613541 6040;电子邮件:Thomas.Krause@rmc.ca 摘要 F/A-18 飞机的飞行控制面由碳/环氧树脂蒙皮和铝蜂窝芯复合材料组成,这种复合材料容易进水。由于水分导致蒙皮和芯之间的粘合性下降,方向舵在飞行中出现故障。目前,对方向舵表面进行手动透射超声波检测 (UT) 可将脱粘识别为接收信号幅度的减小。然而,蜂窝单元内的水提供了显著的声音传输,这可能会掩盖脱粘。在本研究中,首先使用热成像技术在两个在用方向舵内识别出水。然后通过中子射线照相术绘制出精确的水位置。使用喷射技术获得的透射 A 扫描的时间基分析允许区分单元壁信号和通过单元内水的信号。检查接收的单元壁信号强度
• 1997 年 5 月,美国航空公司运营的另一架 A300B4-605R 飞机(AA 903 航班)发生了一起非致命事故,涉及类似的方向舵踏板输入,因此导致非常高的尾翼负载。这是上面提到的四个事件之一。这起事故促使包括空客在内的三大机身制造商和美国联邦航空局的一名代表联合签署了一封前所未有的信,警告美国航空公司 (1) 在其训练“高级飞机机动计划”(AAMP) 中提倡使用方向舵进行滚转控制的危险和 (2) 使用无法提供真实反馈来训练这些失控恢复机动的模拟器所带来的“负面训练”的固有危险。这些明确的警告以及应使用的正确技术随后在多个出版物和演示文稿中公布和重复,例如空中客车在 AA 903 调查中提交的资料,以及空中客车和其他制造商于 1998 年出版的行业出版物《失速恢复训练辅助》。此外,NTSB 报告正确地确定了此事件的原因:“机组人员在平飞期间未能保持足够的空速,导致意外失速,随后他们未能使用正确的失速恢复技术”(着重强调)。NTSB 公开案卷文件 ID N° 266610 清楚地表明,美国航空公司完全了解这起事故的原因,并且在 AA587 事故发生之前就知道 AAMP 中开发的方向舵使用理论的危险性。AA 587 事故的根本原因完全相同——使用了 AAMP 中教授的不正确的恢复技术——这与行业培训援助提供的指导和普遍接受的飞行技术原则相矛盾。
a.从历史上看,海洋工业关于船舶操纵性品质的设计实践仅限于满足监管要求,包括张贴桥梁信息、舵尺寸、舵转速、操舵装置组件和桥梁可见性。通常,在设计阶段很少预测操纵能力和性能特征。尽管人们早已认识到船舶需要具备“良好”的操纵品质,但这些品质从未被定义或量化。随着 20 世纪 60 年代和 70 年代建造更大的油轮,管理机构和公众开始担心这些船舶的安全。1978 年,AMOCO CADIZ 事故发生,1978 年《港口和油轮安全法》通过后,相关研究被高度重视。研究表明,碰撞、撞击和搁浅占所有船舶事故的 70% 以上。已发表的技术文献中记载了一些船舶操纵特性较差的例子,包括容易进行意外 360 度转弯的船舶。
