分布在重心周围。纵向稳定性和控制力来自水平尾翼和升降舵,它们具有非常有用的力矩臂。垂直尾翼提供方向稳定性,使用方向舵进行方向控制。机翼/机身/起落架设置允许机翼在重心附近提供升力,并将起落架定位在飞机可以以起飞速度旋转的位置,同时提供足够的旋转而不会刮擦尾部。这种布置还可以降低修剪阻力。发动机位于机翼下方的吊架上。这种布置允许发动机重量抵消机翼升力,减少翼根弯矩,从而减轻机翼重量。这种发动机位置还可以设计成基本上没有不利的空气动力学干扰。
1.0 A22 简介 A-22 是一种非特技双座超轻型飞机,专为休闲飞行和白天目视飞行规则初级训练而设计,可在草地或硬质跑道上飞行。它是一种金属空气框架高翼支柱支撑单翼飞机,配有并排座位和宽大的驾驶舱玻璃。固定三轮起落架配有液压制动器和可操纵的前轮,与方向舵踏板相连。标准动力装置是 100 bhp Rotax 912ULS,驱动地面可调 3 叶复合螺旋桨。两个机翼油箱的总燃油容量为 92 升。标准 A22 飞机配备 Rotax FLYdat 数字发动机仪表组。在驾驶这架飞机之前,请确保您完全熟悉 FLYdat 操作 - 请参阅本手册第 10 节。
1.0 A22 简介 A-22 是一种非特技双座超轻型飞机,专为休闲飞行和在草地或硬质跑道上进行日间 VFR 飞行初级训练而设计。它是金属空气框架高翼支柱支撑单翼飞机,配有并排座位和大面积玻璃驾驶舱。固定三轮起落架配有液压制动器和与方向舵踏板相连的可操纵前轮。标准动力装置是 100 马力的 Rotax 912ULS,驱动地面可调式 3 叶复合螺旋桨。两个机翼油箱的总燃油容量为 92 升。标准 A22 飞机配备 Rotax FLYdat 数字发动机仪表组。在驾驶此飞机之前,请确保您完全熟悉 FLYdat 操作 - 请参阅本手册第 10 节。
我们还专注于培训。通过研究今天培训的内容和明天需要的内容,我们都认识到在这方面“缩小差距”的必要性。通过行业循证培训计划,我们取得了许多良好的成果。随着可靠性、质量和整体安全性的提高,在职事件有望减少,那么从定义上讲,飞行员遇到这些事件的频率也会降低。虽然这当然是好事,但这确实意味着飞行员将越来越少有机会保持他们的知识和技能“敏锐”。事实上,保持“操纵杆和方向舵”技能的机会越来越少,而航空运输系统的发展使这种情况进一步恶化,因为手动飞行的机会正在减少。我们如何处理这个问题只是我们面临的挑战之一。
X-59飞机的控制表面和起落架门的自由鞋测试于2023年7月在洛克希德·马丁的Palmdale站点完成。自由层测试的目的是测量可移动飞行控制表面的铰链线以及鼻子和主要起落架门周围的旋转自由鞋,以确保通过设计和/或调整空气净值清除的设计和/或调整分析来确保自由层的要求。振动表面增加了致动机制和铰链点的磨损,因此自由状鞋会影响铰链线的嗡嗡声,极限循环振荡以及其他航空弹性和喷气弹性现象。X-59自由层控制表面测试包括左和右副翼,襟翼和稳定器以及舵和T尾。自由层门测试包括鼻子起落架门和两个主要起落架门。
液压系统为表面执行器提供主要和备用液压。对于给定轴上的三个类似的运动反馈传感器故障,使用数字直接电气连接 (DEL) 模式完成控制,该模式提供从飞行员输入传感器到控制表面执行器的直接电气路径。如果三个数字处理器发生故障,则纵向和滚转控制通过对稳定器的备用机械模式完成。机械控制是传统的电缆、推杆和曲柄系统。在机械备用模式下,操纵杆到稳定器传动装置通过非线性连杆进行修改,以提供操纵杆力和偏转或所有飞行条件之间的所需灵敏度。在机械模式下,可通过模拟 DEL 路径控制副翼或方向舵。如果发生完全电气故障,则只能对稳定器进行机械控制。
摘要:本研究文章介绍了一种用于实验性无人遥控飞机主控制面(副翼、方向舵和升降舵)的设计方法。该方法基于每个控制面尺寸所需的机械和气动分析的提议和标准化,考虑到 SAE 航空设计在微型类中的竞赛目标。它用于先前在有关航空设计、计算机流体动力学 (CFD) 软件和飞机可控性法规的参考文献中描述的经验结果,以获得设计变量。基于此信息,设计所需的迭代序列由 C++ 语言代码自动执行,以获得每个表面的最佳特性,从而减少计算错误的可能性、总时间和设计过程中投入的工作量。将该方法应用于最新的飞机设计,可将总控制系统重量与飞机空重之比降低至最低 3.4%。
从一开始我们就以最佳的 Savage Cub-S 为出发点,加强和改进机身框架,将座舱高度增加了几厘米,改善了机上的可达性和整体人体工程学,现在更加有利。我们增加了已经很宽敞的 Cub-S 升降舵和方向舵的表面,这是“超慢”飞行的基本要素。由于新的千斤顶螺丝配平系统,稳定器垂直行程已增加,以平衡新的 Hyper Stol 机翼迎角。根据要求,座舱可以用碳纤维装饰,例如仪表板、新地板、凯夫拉增强轻质座椅。在基座上安装了新的油门杆。Rotax 的基本发动机支架是动力聚焦型,发动机罩可以根据要求容纳高达 180 马力的发动机,例如 Lycoming / Titan 或其他品牌。
Becker 轴承监测系统 (BBMS) 通过安装在颈轴承衬套中的四个电气磨损传感器监测舵颈轴承的磨损情况。传感器与轴承衬套一起磨损,从而能够精确测量颈轴承间隙。测量的颈轴承间隙通过电缆连接传输到安装在舵机室的处理单元。处理单元包含一个 3.5 英寸触摸屏,用于校准系统并显示监测值以及颈轴承的磨损历史。通过处理单元,颈轴承间隙和测量值可以与船上的任何其他监测和报警系统进行接口。对颈轴承的持续监测可以更好地规划维修活动,并且取代潜水员执行的定期颈轴承检查。
