Duke (1991) 在分析 21 起涡轮喷气发动机 (Part 121) 事故时报告了类似的结果。程序行为不规范占机组失误的 69%(比排名第二的类别——决策失误高出三倍以上)1。过去五年发生的三起航空事故明确支持了这些发现。在第一起事故中,西北航空公司 255 航班(一架 MD-82)在无襟翼/无前缘缝翼起飞后坠毁在底特律大都会机场(NTSB,1988 年)。在第二起事故中,达美航空公司 1141 航班(一架 B-727)在无襟翼/无前缘缝翼起飞后不久从达拉斯-沃斯堡国际机场坠毁(NTSB,1989 年)。第三起事故中,全美航空 5050 号航班(一架 B-737 飞机)在拉瓜地亚机场冲出跑道,坠入邻近水域,原因是方向舵调整错误和其他几个问题(NTSB,1990b)。
波音 747 的布局如图 4-1 所示。它符合上述标准。有效载荷分布在重心周围。纵向稳定性和控制力来自水平尾翼和升降舵,它们具有非常有用的力矩臂。垂直尾翼提供方向稳定性,使用方向舵进行方向控制。机翼/机身/起落架设置允许机翼在重心附近提供升力,并将起落架定位在飞机可以以起飞速度旋转的位置,同时提供足够的旋转而不会刮到尾部。这种布置还可以降低修剪阻力。发动机位于机翼下方的吊架上。这种布置允许发动机重量抵消机翼升力,从而减少翼根弯矩,从而使机翼更轻。这种发动机位置还可以设计成基本上没有不利的气动干扰。
AMA 历史项目呈现: ROLAND A. BOUCHER 自传 模型师、作家、电动模型先驱、模型行业 出生于 1932 年 7 月 12 日 1942 年开始建模 AMA #961 由 RAB 撰写并提交(1996 年 7 月);由 NR 转录(1996 年 8 月); SS 编辑(2002 年),JS 重新格式化并更新(2007 年 10 月、2012 年 7 月) 生涯: 驾驶电动 RF-4 在封闭航线上飞行超过 40 英里,创下世界纪录 设计和制造了世界上第一架太阳能飞机 书籍作者,《安静的革命》和《电动飞行》 担任古董模型协会 #49 比赛总监和副总裁超过 15 年 第二次世界大战期间,驾驶自由飞行橡胶、二氧化碳和 U 型控制发光飞机 09-49 荣誉: 2000 年:模型航空名人堂 1948 年:仅制造无线电控制 (RC) 方向舵(自制无线电扑翼方向舵比例)。 1952 年:退出并驾驶全尺寸飞机。 1 1965 年:与兄弟 Bob 加入 Astro Flight,设计了以下产品: Torrey Pines A-2 北欧自由飞行套件 世界上第一台电力装置 Astro 10 Astro 15、25、05、020 和快速电池充电器 RF-4 比例供电滑翔机发光无线电控制套件 RF-4 比例电动滑翔机电动无线电控制套件 Bushmaster 电动运动电动无线电控制套件 Electra 225 电动图案船电动无线电控制套件 1971 年:2 月 5 日,驾驶电动 RF-4 飞越 40 英里封闭航线,创下世界纪录。AMA ref
2.1a 舰桥布局 2.1b 驾驶室控制台布局 2.2.2a 雷达和 ECDIS 设备 2.2.2b 雷达操作台 2.2.2c 雷达显示器 2.2.3a ECDIS 操作台 2.2.3b ECDIS 显示器 2.3.1a 操舵台外围设备 2.3.2a 电罗经系统 2.3.2b 电罗经监视器 2.3.2c 电罗经子菜单 2.3.3a 自动驾驶仪控制面板 2.3.6a 舵角指示器 2.4.1a 主机舰桥控制装置 2.4.3a 推进器控制系统 2.4.3b 推进器控制面板 2.5.1a 速度计系统 2.5.2a Loran C 2.5.3a DGPS 导航仪 2.5.4a 风速计2.5.5a 气象传真接收器 2.5.6a 回声测深仪系统 2.5.6b 回声测深仪前面板 2.5.7a 值班呼叫面板 2.5.8a 自动识别系统 2.5.9a 航行事件记录系统 2.5.10a 主时钟控制面板 2.6.1a GMDSS 2.6.1b GMDSS 遇险反应 2.6.1c GMDSS 设备
本文介绍了一种倾转旋翼飞行模拟平台,用于实时模拟 Bell XV-15 飞机,供教学和研究之用。倾转旋翼飞机的数学模型在 MATLAB/Simulink © 中实现,包括飞机动力学、执行器、传感器和飞行控制计算机的简化模型。实现的倾转旋翼数学模型与飞行控制硬件(即飞行操纵杆和方向舵踏板)相连,飞行员使用这些硬件来设置输入命令。相反,图形环境由 FlightGear 提供,FlightGear 是一种广泛用于研究活动的开源跨平台软件。本文的另一个贡献是设计和实施了稳定性控制和增强系统,以增强飞机稳定性并改善操纵品质。开发的模拟器通过多次模拟进行测试,验证了开发的数学模型和稳定性控制和增强系统的有效性。结果是一个可在商用笔记本电脑上执行的倾转旋翼飞行模拟平台,具有实时性能,可用于研究和教学活动。
是 6 叶 Dowty Rotol 后掠形螺旋桨。单个控制杆控制每个螺旋桨/发动机组合。辅助动力装置 (APU) 将被安装在尾部。飞机可容纳两名飞行员、一名观察员、两名乘务员、行李架、卫生间,并设有厨房。有一个前后储物舱和一个后货舱。飞机的最大飞行高度为 31,000 英尺。Saab 2000 具有全液压驱动的电子控制方向舵,并将具有全液压驱动的电子控制升降舵作为后续设计修改。动力升降舵控制系统 (PECS) 提供左右升降舵表面的控制和动力驱动。PECS 还提供飞机稳定性增强和配平功能。拟议的升降舵系统在许多方面与方向舵设计相似,由模拟和数字电路混合组成,没有机械备份。控制柱连接到线性可变差动传感器 (LVDT)、操纵杆阻尼器、自动驾驶伺服器、带断开装置的线性弹簧,并与电子断开装置互连。连接到控制柱的位置传感器 (LVDT) 向两个电动升降舵控制单元 (PECU) 提供信号。每个 PECU 通过两个独立的伺服执行器通道 (SAC) 控制两个升降舵伺服执行器 (ESA)。每个 SAC 细分为一个主控制通道和一个监控通道。由一个 PECU 控制的四个 ESA 中的两个定位一个升降舵侧。ESA 有两种操作模式:主动和阻尼。当 PECU 的模式控制电流和液压可用时,将产生主动模式。一个主动伺服执行器足以操作升降舵表面。升降舵伺服执行器阀门和执行器柱塞位置反馈由位置传感器 (LVDT) 提供。PECU 通过配平继电器和两台数字空气数据计算机连接到一台飞行控制计算机。飞行控制计算机还向自动驾驶伺服器提供信号。操纵杆到升降舵传动装置是指示空速 (IAS) 的功能。配平和稳定性增强基于 IAS、垂直加速度和襟翼位置。操纵杆、配平和升降舵位置和状态信息被馈送到发动机
W7.1.1 这些要求适用于用于船体和机械应用的钢锻件,如相关 IACS 统一要求(例如UR M72、UR M68 等)和/或船级社的要求,如舵杆、舵销、螺旋桨轴、曲轴、连杆、活塞杆、齿轮等。在相关情况下,这些要求也适用于锻件原料和用于加工成简单形状部件的轧制棒材。W7.1.2 这些要求仅适用于设计和验收试验与环境温度下的机械性能相关的钢锻件。对于其他应用,可能需要额外的要求,特别是当锻件用于低温或高温下使用时。W7.1.3 另外,可以接受符合国家或专有规范的锻件,前提是这些规范合理地等同于这些要求,或由船级社特别批准或要求。W7.1.4 (void) W7.2 制造
用于航空通信技术的保形轻型天线结构 (CLAS-ACT) – 开发基于超轻薄气凝胶的保形微波天线,该天线可以贴合飞机轮廓,避免干扰,减少阻力、燃油消耗和排放。促进超高效、低排放航空动力 (FUELEAP) – 利用高效固体氧化物燃料电池 (SOFC)、高产燃料重整器和混合动力飞机架构的技术融合,开发紧密集成的电力系统,以两倍的燃烧效率利用碳氢化合物燃料发电。用于 NASA 电动飞机的锂氧电池 (LION) – 研究设计抗分解的超稳定电解质的可行性,以延长电池使用寿命,让电动飞机飞得更远。翼展自适应机翼 (SAW) – 通过使用形状记忆执行器铰接机翼外侧部分,允许在保持稳定性的同时减小方向舵的尺寸,从而提高飞机效率。
是 6 叶 Dowty Rotol 后掠形螺旋桨。单个控制杆控制每个螺旋桨/发动机组合。尾部将安装辅助动力装置 (APU)。该飞机可容纳两名飞行员、一名观察员、两名乘务员、行李架、卫生间,并可安装厨房。有一个前后储物舱和一个后货舱。飞机的最大运行高度为 31,000 英尺。萨博 2000 具有全液压电子控制方向舵,并将具有全液压电子控制升降舵作为后续设计修改。动力升降舵控制系统 (PECS) 提供左右升降舵表面的控制和动力驱动。PECS 还提供飞机稳定性增强和配平功能。拟议的升降舵系统在许多方面与方向舵设计相似,由模拟和数字电路混合组成,没有机械备份。控制柱与线性可变差动传感器 (LVDT)、操纵杆阻尼器、自动驾驶伺服器、带断开装置的线性弹簧相连,并与电子断开装置互连。与控制柱相连的位置传感器 (LVDT) 向两个电动升降控制装置 (PECU) 提供信号。每个 PECU 通过两个独立的伺服执行器通道 (SAC) 控制两个升降舵伺服执行器 (ESA)。每个 SAC 细分为一个主控制通道和一个监控通道。四个 ESA 中的两个由一个 PECU 控制,用于定位一个升降舵侧。ESA 有两种操作模式,主动和阻尼。当 PECU 的模式控制电流和液压可用时,将产生主动模式。一个主动伺服执行器足以操作升降舵表面。升降舵伺服执行器阀门和执行器柱塞位置反馈由位置传感器 (LVDT) 提供。PECU 通过配平继电器和两个数字空气数据计算机连接到一台飞行控制计算机。飞行控制计算机还向自动驾驶伺服器提供信号。操纵杆到升降舵的传动装置是指示空速 (IAS) 的功能。配平和稳定性增强基于 IAS、垂直加速度和襟翼位置。操纵杆、配平和升降舵的位置和状态信息被传送到发动机
飞翼飞机的商业应用(如本文讨论的 Flying-V)有助于减少航空业产生的碳和氮排放。然而,由于没有尾翼,所有飞翼飞机的可控性都降低了。因此,机翼上控制面的位置和尺寸是一个不小的问题。本文重点介绍如何使用基于认证要求的离线操控质量模拟来解决此问题。在不同的飞行条件下,飞机必须能够执行认证机构定义的一组特定的机动。首先,离线模拟计算执行每个机动所需的升降舵、副翼和方向舵的最小控制权限。然后,根据所有机动的全局最小值,确定控制面的尺寸并沿机翼放置。所采用的气动模型结合使用了雷诺平均纳维-斯托克斯 (RANS) 和涡格法 (VLM) 模拟。使用VLM和用RANS模拟校准的VLM对控制面的控制权限进行评估,发现两者之间存在显著差异。
