两本《并行分布式处理》卷本(Rumelhart and McClelland 1986,McClelland and Rumelhart 1986)的出版标志着神经网络寒冬的结束。这两卷书内容丰富,编辑精良,其中章节均由当时在加州大学圣地亚哥分校的 PDP 研究小组成员撰写。这些卷本推动了人工神经网络(很快被称为联结主义)在认知科学中的应用。联结主义是否能够解释思维,迅速成为哲学家、心理学家和人工智能研究人员争论的热门话题(Fodor and Pylyshyn 1988,Smolensky 1987,Chalmers 1990)。这场争论已经平息,没有宣布胜者,人工神经网络成为当前人工智能领域的既定参与者。
反向传播这一术语源自一篇题为“通过反向传播误差学习表征”的原始文章(Rumelhart 等人,1986 年)。这是一种机器学习算法,可调整神经网络中连接的权重,以最小化网络实际输出向量与期望输出向量之间的差异(误差)的度量。在神经科学中,术语“反向传播”是指在轴突小丘区域产生的动作电位向后传播到该神经元的输入端(突触后末端或树突棘)。还观察到,循环侧支将神经元的输出带到其输入区域。这并不一定会导致误差校正;相反,它会加强特定神经元的激发。此外,突触连接不允许动作电位从突触后末端(输入区域)跨越到突触前末端(带来传入信号的神经元的输出区域)
图1:机器学习与AI模型的深入学习之间的关系。大流行效应在这首歌中引起了很多关注,继续深入学习尝试,从而增加了对机器的期望。基于无接触世界,更高的注意力与不同的应用有关,即面对识别,分类和检测(Hussin等人。(2022))。因为每个人的脸都不一样;它使人类具有惊人的真实感。机器学习已在许多领域广泛使用。研究社区正在不断就新发展领域进行研究。II。 机器学习方法于1959年,亚瑟·塞缪尔(Arthur Samuel)进行了机器的演变。 在1948年,图灵(Turing and Champernowne)创作了基于最重要的国际象棋游戏的计算机程序的纸和铅笔。 草稿算法是由Christopher Strachey(1952)创建的。 尼尔森在1960年代出版了带有模式分类书的模式分类。 Duda和Hart在1970年解释了模式分类。 研究人员Hinton,Nielsen,Rumelhart和Williams在1985年和1986年提出了神经网络。 用多层感知器(MLP)对实用反向传播(BP)的培训是一个主要的想法。 深度学习将神经网络视为今天的时间。 1。 ML的分类:无监督和监督的强化学习II。机器学习方法于1959年,亚瑟·塞缪尔(Arthur Samuel)进行了机器的演变。在1948年,图灵(Turing and Champernowne)创作了基于最重要的国际象棋游戏的计算机程序的纸和铅笔。草稿算法是由Christopher Strachey(1952)创建的。尼尔森在1960年代出版了带有模式分类书的模式分类。Duda和Hart在1970年解释了模式分类。研究人员Hinton,Nielsen,Rumelhart和Williams在1985年和1986年提出了神经网络。用多层感知器(MLP)对实用反向传播(BP)的培训是一个主要的想法。深度学习将神经网络视为今天的时间。1。ML的分类:无监督和监督的强化学习
第一个神经网络——感知器——是模拟大脑行为的尝试(Rosenblatt,1958 年)。这些网络能够提供记忆和学习如何工作的简单复制,但在简单的非线性逻辑函数方面却失败了。当这些感知器被组织成多层并以新的方式训练时——这样一层的学习信息和错误就可以传递到下一层——它们的“理解力”和表达能力得到了改善(Rumelhart 等人,1986 年)。当这些多层网络在几个连续的步骤中被用来创建更深层次的人工神经网络时,深度学习(LeCun 等人,2015 年)就出现了。深度学习使上下文识别成为可能。由于这种上下文分层,这些深度网络现在能够识别和理解更高层次的概念,
深度神经网络是一种复杂的结构化系统,它以并行、分布式和上下文敏感的方式处理信息,而深度学习则是利用这些系统通过依赖经验的学习过程获得与智能相关的能力的努力。在人工智能领域,深度学习的工作通常旨在利用所有可用的工具和资源来创造和理解智能,而不考虑其生物学合理性。然而,深度学习的许多核心思想都从大脑和人类智能的特征中汲取灵感,我们认为这些受大脑启发的系统最能捕捉这些特征(Rumelhart、McClelland 和 PDP 研究小组,1986 年)。此外,深度学习研究中出现的想法可以帮助我们了解人类和动物的记忆和学习。因此,深度学习研究可以看作是研究人员之间相互交流的沃土,这些研究人员研究的相关问题对生物智能和机器智能都有影响。
人工智能 (AI) 有着数十年的悠久传统。1956 年,麦卡锡在达特茅斯会议上首次提出了“人工智能”这个名称,从此开启了这一研究领域的热潮,并一直延续至今 (McCarthy et al., 2006)。人工智能最初的重点是符号模型和推理,随后出现了第一波神经网络 (NN) 和专家系统 (ES) 的浪潮 (Rosenblatt, 1957; Newel and Simon, 1976; Crevier, 1993)。当明斯基和帕普特 (Minsky and Papert, 1969) 证明感知器在学习非线性可分函数(例如异或 (XOR))时存在问题时,该领域遭受了严重挫折。这极大地影响了人工智能在随后几年的发展,尤其是在神经网络领域。然而,在 20 世纪 80 年代,神经网络通过反向传播算法的发明而卷土重来(Rumelhart 等人,1986 年)。后来在 20 世纪 90 年代,关于智能代理的研究引起了广泛的兴趣(Wooldridge 和 Jennings,1995 年),例如探索感知和行为的耦合效应(Wolpert 和 Kawato,1998 年;Emmert-Streib,2003 年)。最后,在 21 世纪初,大数据的出现,导致了神经网络以深度神经网络 (DNN) 的形式再次复兴(Hochreiter 和 Schmidhuber,1997 年;Hinton 等人,2006 年;O'Leary,2013 年;LeCun 等人,2015 年)。这些年来,人工智能在机器人、语音识别、面部识别、医疗保健和金融等许多领域取得了巨大成功(Bahrammirzaee,2010;Brooks,1991;Krizhevsky 等人,2012;Hochreiter 和 Schmidhuber,1997;Thrun,2002;Yu 等人,2018)。重要的是,这些问题并不都属于一个领域,例如计算机科学,而是涉及心理学、神经科学、经济学和医学等多个学科。鉴于人工智能应用的广泛性和所用方法的多样性,毫不奇怪,看似
摘要。如今,基于计算机技术的进步,研究旨在开发新的数据处理方法。一些研究侧重于创造模仿人类生物数据处理机制的新工具。这些研究为人工神经网络的发展铺平了道路,与传统的、更常用的预测分析工具相比,人工神经网络可以被视为一种更优越的预测分析工具。如今,人工神经网络已在生态学、工程学和健康等学科中得到广泛应用。然而,可以说,尽管它们比其他预测分析更具功能性和有效性,但它们在教育研究中的应用却十分有限。本研究旨在通过参考通过人工神经网络分析进行的研究,阐明人工神经网络在教育研究中的功能和作用。关键词:人工神经网络、多层感知器、单层感知器、输入层、隐藏层简介人工神经网络是模拟人类数据处理系统的数据处理系统(Elmas,2003 年,第 22 页)。人工神经网络的概念源于在计算机系统上模仿人脑的运作原理,用定量数据进行计算,并创建生物神经元的数学模型(Efe & Kaynak,2000,第 1 页)。第一个人工神经网络是由神经生理学家 Warren McCulloch 和数学家 Walter Pitts 基于人脑的计算能力创建的(Bishop,2014,第 9 页)。 1958 年 Frank Rosenblatt 开发出感知器这种人工神经网络系统后,人工神经网络的研究开始加速,随后出现了自适应线性元件(自适应线性元件 (Widrow & Hoff, 1960)、Hopfield 网络 (Hopfield, 1982)、Kohonen 网络 (Kohonen, 1982, 1984)、玻尔兹曼机 (Ackley et al., 1985) 和通过反向传播算法学习的多层前馈神经网络 (Rumelhart et al., 1986;引自 Lek & Guegan, 1999, p. 67)。现代人工神经网络研究的重点是开发新的、更有效的学习算法,并创建能够响应随时间变化的模型的网络 (Kriesel, 2007, pp. 21-22)。如前所述,人工神经网络模拟人类大脑中的生物神经元和创建人工神经元的数学模型基于生物模型(Kohli et al.,, 2014, p. 745)。Hanrahan(2011, p. 5)描绘了生物模型的结构,如图1所示;
1) Markoff J:海量数据塑造了计算的新时代。纽约时报,2009 年。https://www. nytimes.com/2009/12/15/science/15books.html (2022年1月3日阅读覧). 2)美国国家癌症研究所:第四范式:大数据如何改变科学。 2015. https://datascience.cancer.gov/news-events/events/fourth-paradigm-how-big-data-changing-science (2022年1月3日阅读覧). 3) Rosenblatt F:感知器:用于信息存储和组织的概率模型。心理学修订版 1958; 65:386-408。 4) Rumelhart DE, Hinton GE, Williams RJ : Learning representative representative of the CNNs. Nature 1986; 323 : 533-6. 5) Krizhevsky A, Sutskever I, Hinton GE : ImageNet category with deep convolutional neurons. Communications of the ACM 2012; 60 : 84- 90. 6) Gutierrez G : Artificial intelligence in the intensive care unit. Crit Care 2020; 24 : 101. 7) Gulshan V, Peng L, Coram M, et al : Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photos. JAMA 2016; 316: 2402-10. 8) Barbieri C, Molina M, Ponce P 等:一项国际观察性研究表明,人工智能用于临床决策支持可优化血液透析患者的贫血管理。Kid- ney Int 2016 ; 90 : 422-9。9) Jayapandian CP, Chen Y, Janowczyk AR 等:基于深度学习的肾皮质组织结构分割与多种组织学染色的开发和评估。Kid- ney Int 2021 ; 99 : 86-101。10) Tomašev N, Glorot X, Rae JW 等:一种临床适用的持续预测未来急性肾损伤的方法。Nature 2019 ; 572 : 116-9。 11) Connell A,Raine R,Martin P 等:数字化护理路径的实施(第 1 部分):对临床结果和相关医疗保健成本的影响。J Med Internet Res 2019;21:e13147。12) Zhang L,Baldwin I,Zhu G 等:连续性肾脏替代治疗期间回路压力的自动电子监测:技术报告。Crit Care Resusc 2015;17:51-4。13) Kakajiwala A,Jemielita T,Hughes JZ 等:膜压可预测儿科连续性肾脏替代治疗回路的凝血。儿科肾脏病学 2017;32:1251-61。 14) Shah SJ, Katz DH, Selvaraj S 等: Phenomapping for novel category of heart Failure with Reserved Shooting Fraction. Circulation 2015 ; 131 : 269-79. 15) Komaru Y, Yoshida T, Hamasaki Y 等: Hierarchical clustering analysis for predicting 1-year