图2显示了两个简化的热失控序列:在左侧,右侧和右侧的序列,而没有早期气体排气。在早期气体排气时,细胞外壳会在整个热失控之前的一段时间内打开并释放气体。在这些示例中,我们假设内部细胞衰竭会导致意外连续的局部加热,然后过热,最终融化了阳极和阴极之间的内部分离器。一旦分离器在细胞中本地的某个地方失败,阳极和阴极侧都会直接接触。现在同时发生了几种效果:接触中的活动材料在强烈的放热反应中直接反应,这可能取决于使用的细胞化学。此外,电池电压下降至零,并且电荷载体不受控制地从一侧移到另一侧,随后是加速的局部热产生。生成的热量融化了更多的分离器,因此此事件在整个单元格中传播为完整的热失控,并产生强大的气体,并且电池室中的压力增加。取决于细胞化学及其反应性,整个过程可能只需几秒钟,例如对于高镍细胞(例如,nmc),也可以在无镍细胞(如LFP)的分钟范围内。还有其他因素会对这种行为产生影响,例如细胞的外形或活动材料的涂层厚度。
锂离子电池由于可能发生失控传播而容易产生危害。在电池产品开发和随后的设计验证和安全认证的安全性测试中,热失失的发作由各种测试方法(例如指甲渗透,热坡道或外部短路)触发。这种故障引发方法会影响热量贡献的量和气体世代的组成。本研究比较了两种这样的触发方法,即外部加热和使用热激活的内部短路装置(ISCD)。在18650年的单细胞水平以及多个细胞配置水平下,在18650年的圆柱细胞中,在实验中研究了触发方法对总热量产生的影响。观察到失败的严重程度对于在单细胞水平下具有ISCD的细胞的严重程度较差,而在多个细胞配置水平上观察到了相反的结果。进行了初步的数值分析,以更好地了解相对于热失控的触发方法和传热条件的电池安全性能。©2024作者。由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。[doi:10.1149/1945-7111/ad3aae]
摘要:设计电动汽车的电池时,必须考虑不同的参数,以从机械和热的观点中获得电池/模块/电池的最安全排列。在这项研究中,分析锂离子细胞的热失去繁殖机制是在电池组中的电池组中的布置的函数,以防发生热失控的电池组。目的是使用对属于燃烧车辆的电池的电池的结构和化学成分进行微观分析,以确定电池组中哪种单元/模块排列最关键。及其最终条件与相同类型的新细胞的状况进行了比较。以这种方式,比较了热失控后阴极,阳极和分离器的结构和化学组成。进行了这项研究以获取信息,以了解锂离子细胞的机械性能及其在热失控加热后的行为,从而导致火力传播。通过进行的分析,得出结论,放置在垂直排列的细胞的行为比水平排列中的细胞差。关于电池的安全性,这项研究的结果将使我们能够确定电池组中电池组的哪种布置和结构,并且由于热衰竭,电池组中的单元格更安全。
摘要:锂离子电池经历了快速温度的升高,随着热逃亡期间的高度爆炸和爆炸风险,水雾被认为是最有效的冷却策略之一。水丝网可能会受到安全阀空气流的影响,随后会影响冷却特性。在本文中,具有固定工作压力的水雾喷嘴位于100 AH Lifepo 4电池上方1 m,以抑制热失控,并且已经比较和分析了各个阶段的冷却特性。结果表明,在启动热失控之前,可以抑制热失控的发展,并且在打开电池安全阀后,水雾会产生更好的冷却效果。已经确定了155 kJ/kg的临界积累热密度,这是热失去抑制的阈值。已经分析了水雾与浅水雾之间的对抗,并且水雾液滴不能落在电池表面上,导致冷却速率较差为0.57 kW。这意味着水雾的抑制作用将受到安全阀的气流影响的影响。
•超细胞机制o电气(保险丝,断路器等)- 防止电气传播,但不能解决源o热o热(不充实的涂层,相变材料,热分离器等)- 体重和体积处罚,主要是由于导致缓慢的导时尺度,可能干扰热管理系统(TMS)o抑制燃料(水溶液) - 需要激活诸如热量插头之类的概念,太慢以防止模块的传播
Boyd 定制生产了 3M™ 的各种压敏胶,这些胶无需固化时间即可高效地将电池单元粘合在一起,并增强电动汽车电池组组件的结构完整性。阻燃和绝缘胶带具有即时粘合强度,并且在制造环境中比液体胶粘剂更易于使用。
Hatchard等。 将这些模型组合在一起,以模拟在过热条件下的完整细胞。 [9]该领域的新出版物[10-14]通常是指这些模型,并将其扩展以涵盖更广泛的应用程序。 这项工作的目的是为由于热失控而对蝙蝠的安全风险进行快速评估,该风险可以应用于高度灵活的电池生产,以用于各种类型,尺寸和形状的细胞。 [15]因此,在这项工作中开发了用于锂离子电池安全性评估的数值模型。 这项工作中提出的化学模型可以仔细观察热失控期间的分解反应。 这允许根据电池电池组成评估生成的热量和气体,这是有用的尺寸,例如安全通风孔和热屏障。 开发的模型侧重于热滥用条件下的完整细胞模拟。 因此,化学模型与热模拟相结合,以获得温度曲线并从模拟结果中释放总热量。 进行验证,建造了用于热滥用电池的测试钻机。 袋细胞通过以恒定的速度加热来将它们带到热失控中。 为了验证模拟框架,分析了热失控过程和相应气体释放期间温度预纤维的测量。Hatchard等。将这些模型组合在一起,以模拟在过热条件下的完整细胞。[9]该领域的新出版物[10-14]通常是指这些模型,并将其扩展以涵盖更广泛的应用程序。这项工作的目的是为由于热失控而对蝙蝠的安全风险进行快速评估,该风险可以应用于高度灵活的电池生产,以用于各种类型,尺寸和形状的细胞。[15]因此,在这项工作中开发了用于锂离子电池安全性评估的数值模型。这项工作中提出的化学模型可以仔细观察热失控期间的分解反应。这允许根据电池电池组成评估生成的热量和气体,这是有用的尺寸,例如安全通风孔和热屏障。开发的模型侧重于热滥用条件下的完整细胞模拟。因此,化学模型与热模拟相结合,以获得温度曲线并从模拟结果中释放总热量。进行验证,建造了用于热滥用电池的测试钻机。袋细胞通过以恒定的速度加热来将它们带到热失控中。为了验证模拟框架,分析了热失控过程和相应气体释放期间温度预纤维的测量。
摘要:锂离子电池(LIB)的广泛应用带来了各种安全问题,例如火灾和爆炸事故。针对热量失控(TR)和LIB的火灾问题,我们审查了LIB内的TR的演变以及TR气体及其危害的释放,以及近年来在Libs分离的领域的研究进展。首先是物理,电气和热滥用是导致TR的三个主要因素,而衰老电池的热稳定性显着恶化。此外,电解质的分解和活性材料之间的反应会产生CO,CO 2,H 2,HF和多种烃。这些TR气体具有严重的有毒和爆炸性危害。此外,距离分离可以有效地延迟LIB模块中TR的发生和传播。作为一种良好的散热材料,相位变化材料被广泛用于热管理系统,并且在LIB的限制中具有广泛应用的巨大前景。最后,对TR气体对衰老的LIB和更安全和更有效的分离的危害进行了研究。