CRISPR-Cas12a 是一种强大的 RNA 引导基因组编辑系统,它利用其单个 RuvC 核酸酶结构域通过顺序机制产生双链 DNA 断裂,其中非靶链的初始切割随后是靶链切割。目前尚不清楚空间上相距甚远的 DNA 靶链如何向 RuvC 催化核心移动。在这里,连续数十微秒的分子动力学和自由能模拟表明,位于 RuvC 结构域内的 α 螺旋盖通过锚定 crRNA:靶链双链并引导靶链向 RuvC 核心移动,在 DNA 靶链的移动中起着关键作用,DNA 切割实验也证实了这一点。在这种机制中,REC2 结构域将 crRNA:靶链双链推向酶的核心,而 Nuc 结构域通过向内弯曲来帮助靶链在 RuvC 核心内的弯曲和调节。了解 Cas12a 活性背后的这一关键过程将丰富基础知识并促进进一步的基因组编辑工程策略。
图2。DNA,SGRNA和蛋白质相互作用(a)(a)匹配的SPCAS9和(b)MM5-SPCAS9聚焦HNH催化位点和PAM(NGG)区域。(C&D)显示了匹配的和MM5的不同视图,从而缩放了PAM远端和RUVC区域相互作用。T-DNA,NT-DNA和SGRNA分别为颜色的洋红色,黄色和浅蓝色。SPCAS9,HNH和RUVC的两个核酸酶结构域以白色和深蓝色显示。
GRNA与REC叶的结合会引起一系列构象变化,从而产生完全活化的蛋白质。 当Cas9和GRNA的络合物连接时,靶DNA可以连接。 PI结构域识别PAM区域,然后将GRNA种子序列配对。 nuc-lobe的HNH和RuVC域负责靶DsDNA的裂解。GRNA与REC叶的结合会引起一系列构象变化,从而产生完全活化的蛋白质。当Cas9和GRNA的络合物连接时,靶DNA可以连接。PI结构域识别PAM区域,然后将GRNA种子序列配对。nuc-lobe的HNH和RuVC域负责靶DsDNA的裂解。
摘要:从理论上讲,可以区分等于或超过16 bp的DNA序列的DNA序列特异性识别蛋白可能是哺乳动物基因组独有的。长期序列的核酸酶,例如天然存在的归巢核酸酶和人工设计的ZFN,TALEN和CAS9-SGRNA。与其他对应物(通过蛋白质部分识别DNA靶位点的其他对应物相比,CAS9使用单个指南RNA(SGRNA)作为DNA靶标识别的模板。由于设计和合成目标位点的SGRNA的简单性,CAS9-SGRNA已成为基因组编辑的最新工具。此外,Cas9-SgrNA的RNA引导的DNA识别活性与HNH结构域和RUVC结构域的非平均链中的核酸酶活性无关,而HNH核酸酶无核酶无效无效无效活性无效(H 840 A)和RUVC核酸酶核酸酶活性无效null null突变(识别10 A)。与SGRNA,CAS9,Cas9(D 10 A),Cas9(H 840 A)和Cas9(D 10 A,H 840 A)一起用于实现双重链断裂,互补的链断管破裂,非满足链破裂,并且分别在TARPEC上进行破裂。基于这种独特的特征,可以在靶位点内或周围引入许多工程酶活性,例如DNA甲基化,组蛋白甲基化,组蛋白乙酰化,胞苷脱氨酸,腺嘌呤脱氨基和启动引导突变。为了防止Cas9衍生物的持久表达靶向,开发了许多瞬态表达方法,包括直接递送Cas9-SgrNA核糖蛋白。生物安全问题在体内应用中是必不可少的;已经设计了包装到病毒样颗粒或细胞外囊泡中的CAS9-SGRNA,已经报道了一些体内治疗试验。
CRISPR/Cas 系统是一种适应性免疫防御机制,古细菌和细菌利用该系统降解外来遗传物质。在这些生物体中,噬菌体的外来遗传物质被获取并整合到 CRISPR 基因座中 (1,2)。这种新物质也称为间隔物,可产生序列特异性片段,用于未来抵抗噬菌体感染。这些序列特异性片段被翻译成短 CRISPR RNA (crRNA),并通过 CRISPR 相关 (Cas) 蛋白的核酸酶活性引导互补入侵 DNA 的切割,该蛋白也由 CRISPR 基因座编码 (1,2)。II 型 CRISPR 系统的 Cas9 核酸酶具有 RNA 结合域、α 螺旋识别叶 (REC)、包括用于 DNA 切割的 RuvC 和 HNH 的核酸酶叶以及原间隔物相邻基序 (PAM) 相互作用位点 (1,2)。 crRNA 通过与 REC 叶内的桥螺旋结合与 Cas9 核酸酶形成复合物,并与 crRNA 的骨架形成多个盐桥 (1,2,3)。
成簇的规律间隔的短回文重复序列 (CRISPR) 和 CRISPR 相关 (Cas) 蛋白是细菌和古菌所特有的,构成了针对外来移动遗传元素的适应性免疫系统。1,2 CRISPR-Cas 系统分为第 1 类(使用多个 Cas 蛋白)和第 2 类系统(使用单个多结构域 Cas 蛋白),根据复杂性和特征蛋白又细分为六种类型(I 型至 VI 型)。3 作为第 2 类系统的成员,II-A 型 CRISPR-Cas9 得到了最广泛的研究和开发,成为基因组编辑和治疗工具。 4 Cas9 具有两个核酸酶位点——His – Asn – His (HNH) 和 RuvC 样结构域,可在双 CRISPR RNA (crRNA) 和反式激活 crRNA (transcrRNA) 向导介导的特定位点实现双链 DNA (dsDNA) 的精确切割。5,6
2018 ;Chen 等人,2017 ;Kleinstiver 等人,2016 ;Lee 等人,2018 ;Slaymaker 等人,2016)。增加和减少 sgRNA-DNA 界面的长度都会显著降低五种 Cas9 变体中的四种的编辑效率,Sniper-Cas9 是个例外(Lee et al., 2018)。但这种影响的基础尚不清楚。最近,Fu 等人观察到与靶标存在大量错配的 sgRNA 能够引导 SpCas9 切口双链 DNA(Fu et al., 2019)。同样,Szczelkun 等人描述了截短的 sgRNA(互补区为 ∆ 7 nt)与嗜热链球菌 Cas9 (StCas9) 结合导致缺口分子的积累 ( Szczelkun 等人,2014 )。这些观察结果表明,截短/延长的间隔区衍生片段对核酸酶的 HNH 和 RuvC 切割域施加了不同程度的影响,使得它们在某些情况下会切开目标 DNA,而不是将其切割。在这里,我们试图检验这一假设。
CRISPR-CAS9是一种尖端的基因组编辑技术,它使用核酸内切酶Cas9在基因组所需的位点引入突变。这个革命性的工具有望治疗无数的人类遗传疾病。然而,尚未确定DNA裂解的分子基础,这是基因组编辑的基本步骤。在这里,使用量子 - 古细胞分子动力学(MD)和自由能方法来披露CRISPR-CAS9中磷酸二酯键裂解的两级依赖机理。从头算MD揭示了Mg 2+磅重的RUVC活动位点的构象重排,这需要H983的搬迁作为一般基础。然后,DNA的裂解通过两个Mg 2+离子的联合动力学从根本上进行的一致的关联途径进行。这阐明了先前有争议的实验证据,这些证据无法完全确定保守的H983和金属簇构象的催化作用。与其他两级依赖性酶的比较支持确定的机制,并提出了基因组编辑和重组的常见催化策略。总体而言,描述的非目标DNA裂解催化
2 类 CRISPR 系统极其多样化,但所有系统都共享一个效应蛋白,该蛋白包含保守的 RuvC 样核酸酶结构域。有趣的是,这些 CRISPR 相关 (Cas) 核酸酶的大小范围从 Cas9/Cas12a 的 >1000 个氨基酸 (aa) 到 Cas12f 的 400-600 个 aa。对于体内基因组编辑应用,紧凑的 RNA 引导核酸酶是理想的,并且可以简化细胞递送方法。尽管微型 Cas12f 效应子已被证明可以切割双链 DNA,但真核细胞中的靶向 DNA 修饰尚未得到证实。在这里,我们从生物化学角度表征了两种微型 VF Cas 核酸酶,SpCas12f1 (497 aa) 和 AsCas12f1 (422 aa),并表明 SpCas12f1 在植物和人类细胞中均能发挥作用,产生针对性的修饰,在植物中,短热脉冲可增强修饰效果。我们的发现为开发基于微型 Cas12f1 的基因组编辑工具铺平了道路。