我们的研究检查了 CRISPR/Cas9 方法对参与生长素生物合成途径的色氨酸氨基转移酶 BnaTAA1 基因的突变效率。我们制作了九种 CRISPR/Cas9 构建体,这些构建体具有不同的启动子,可驱动金黄色葡萄球菌 Cas9 (SaCas9) 或植物密码子优化的化脓性链球菌 Cas9 (pcoCas9) 的表达。我们开发了一种快速有效的系统,用于评估每个构建体使用油菜毛状根引起的突变种类和频率。我们发现 pcoCas9 在突变目标位点方面比 SaCas9 更有效,并且 NLS 信号的存在使诱变机会增加了 25%。在再生系中进一步研究了突变,并确定了转基因植物中 BnaTAA1 基因的表达和基因修饰的遗传性。毛状根转化与 CRISPR/Cas9 介导的基因编辑相结合,为研究重要油料作物 B. napus 中的靶基因功能提供了一种快速而直接的系统。
通过同源重组 (HR) 控制植物基因组的改变仍然很难实现。我们之前开发了植物内基因打靶 (ipGT) 技术,该技术依赖于通过双链断裂同时激活目标基因座和切除目标载体。尽管使用 SpCas9 会导致拟南芥中的 ipGT 频率较低,但我们最近能够通过使用卵细胞特异性表达强效但适用范围较广的 SaCas9 核酸酶来提高效率。在这项研究中,我们现在测试了是否可以进一步改进 ipGT,方法是在染色体内 HR 效率增强的细胞中进行,或者使用 Cas12a,这是一种具有替代切割机制的不同类型的 CRISPR/Cas 核酸酶。我们之前可以证明植物具有三种 DNA ATPase 复合物,如果因突变而丢失,它们都会导致同源基因组重复不稳定性。由于这些蛋白质以独立途径发挥作用,我们在双突变体中测试了 ipGT,其中染色体内 HR 增强了 20 至 80 倍。然而,我们无法获得更高的 ipGT 频率,这表明基因靶向 (GT) 和染色体重复诱导 HR 的机制不同。然而,使用 LbCas12a,尽管非同源末端连接 (NHEJ) 诱导效率较低,但 GT 频率高于 SaCas9,表明 Cas12a 特别适合诱导 HR。由于 SaCas9 因其较长的富含 GC 的 PAM 序列而受到很大限制,因此使用富含 AT 的 PAM 的 LbCas12a 可以大大拓宽 ipGT 的范围,尤其是在靶向启动子和内含子等 CG 沙漠时。
AAV5:腺相关病毒5型; BAB:结合抗体; CD:分化群; DC:树突细胞; MHC:主要的组织相容性复合物; NAB:中和抗体; PBMC:外周血单核细胞; SACAS9:金黄色葡萄球菌CRISPR相关蛋白9; TCR:T细胞受体。8a。细胞介导的响应
背景 单核苷酸替换、基因表达改变或有害基因的去除是植物许多重要农学性状的分子基础[1]。堆叠性状或改变调控途径的几个关键因素将极大地促进作物育种[1]。CRISPR-Cas 系统的多样性和简单性提供了强大的分子工具箱[2-10]。已采用多种策略在细菌、酵母和哺乳动物细胞中实现多重应用[11-16]。正交基因组操作最常用的多重策略包括几个正交 CRISPR 系统形成多功能 CRISPR 系统,例如使用 SpCas9 变体作为腺嘌呤碱基编辑器(ABE)和 SaCas9 作为胞嘧啶碱基编辑器(CBE)的双功能方法[17],或使用 LbCpf1 变体作为 CRISPRa、SpCas9 变体作为 CRISPRi 和 SaCas9 变体作为删除的三功能方法[15]。然而,这些策略需要同时递送多个 Cas 蛋白,并且每个 Cas 蛋白都需要自己的 PAM 识别 [ 15 , 17 ]。另一方面,各种 RNA 适体被整合到 CRISPR RNA 支架中,这些适体
摘要 突变型 RHO 是常染色体显性视网膜色素变性 (adRP) 最常见的遗传原因。在此,我们开发了一种等位基因特异性基因编辑治疗药物,以选择性地靶向人类 T17M RHO 突变型等位基因,同时首次保持野生型 RHO 等位基因完好无损。我们鉴定出一种金黄色葡萄球菌 Cas9 (SaCas9) 引导 RNA,它对人类 T17M RHO 等位基因具有高活性和特异性。使用 HEK293T 细胞和患者特异性诱导多能干细胞 (iPSC) 进行的体外实验显示出活性核酸酶活性和高特异性。将单个腺相关病毒血清型 2/8 包装的 SaCas9 和单个引导 RNA (sgRNA) 视网膜下递送到 RHO 人源化小鼠的视网膜下,表明这种治疗药物选择性地靶向突变型等位基因,从而下调突变型 RHO mRNA 表达。施用这种治疗药物可使杂合突变人源化小鼠的视网膜功能长期(治疗后长达 11 个月)改善,并保存光感受器。我们的研究表明,体内治疗效果具有剂量依赖性。在全基因组测序水平上未观察到不良的脱靶效应。我们的研究为进一步开发这种有效的治疗药物来治疗 RHO - T17M 相关 adRP 提供了强有力的支持,也为开发基因编辑医学提供了一个可推广的框架。此外,我们成功恢复了患有 RHO 人源化小鼠的视力,验证了基于等位基因特异性 CRISPR/Cas9 的药物对其他常染色体显性遗传视网膜营养不良的可行性。
摘要:CRISPR 相关蛋白(如 Cas9)的开发提高了基因组编辑的可及性和易用性。然而,需要额外的工具来量化和识别活体动物中成功的基因组编辑事件。我们开发了一种快速量化和监测活体动物中基因编辑活动的方法,该方法还有助于共聚焦显微镜和核苷酸水平分析。在这里,我们报告了一种新的 CRISPR“指纹识别”方法,用于激活小鼠中的荧光素酶和荧光蛋白作为基因编辑的功能。该系统基于我们之前的 cre 重组酶 (cre) 检测系统的经验,专为能够靶向 lox P 的 Cas 编辑器而设计,包括 SaCas9 和 ErCas12a 的 gRNA。这些 CRISPR 专门在 lox P 内切割,这种方法不同于以前靶向相邻终止序列的体内基因编辑活动检测技术。在这种传感器范例中,在肌肉或静脉内流体动力质粒注射后,在活体 cre 报告小鼠(FVB.129S6(B6)-Gt(ROSA)26Sortm1(Luc)Kael/J 和 Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J,本文中将称为 LSL-luciferase 和 mT/mG)中非侵入性地监测 CRISPR 活性,证明了其在两种不同器官系统中的实用性。通过共聚焦显微镜在特定组织的细胞水平上检查了相同的基因组编辑事件,以确定成功基因组编辑细胞的身份和频率。此外,SaCas9 诱导的靶向编辑效率与 cre 相当,证明了在整个动物中具有高效的传递和活性。这项研究建立了基因组编辑工具和模型,以非侵入性方式追踪体内 CRISPR 编辑并识别目标细胞。这种方法还使之前生成的数千种 lox P 动物模型中的任何一种都具有类似的实用性。
•我们开发了一种SACAS9特异性QPCR分析,以评估《光彩试验》中患者样本中的Edit-101病毒脱落。•患者样品中检测到的编辑101病毒基因组水平明显低于给药剂量(<1%)。病毒基因组。•编辑101脱落是短暂的,在第7天之前,大多数患者观察到的LOQ低于LOQ,在第4周之前,一名HD患者在流泪和第7天的血液和鼻粘膜中观察到,这表明治疗后系统性病毒持久性的风险很小。•编辑101剂量与病毒脱落水平之间没有相关性。综上所述,这些数据表明编辑101具有有利的免疫原性特征。
组合 CRISPR 技术已成为一种变革性方法,可系统地探测冗余基因对的遗传相互作用和依赖性。然而,不同的功能基因组工具在多路复用 sgRNA 方面的表现差异很大。在这里,我们生成并基准测试了十个不同的组合 CRISPR 文库,这些文库以同源物对为目标,以优化双基因敲除筛选。评估了由双化脓性链球菌 Cas9 (spCas9)、正交 spCas9 和金黄色葡萄球菌 (saCas9) 以及 Acidaminococcus 的增强型 Cas12a 组成的文库。我们证明了来自 spCas9 的替代 tracrRNA 序列的组合始终表现出优越的效应大小和 sgRNA 之间的位置平衡,这是一种强大的组合方法来分析多个基因的遗传相互作用。
胞嘧啶碱基编辑能够在不造成 DNA 双链断裂的情况下安装特定点突变,这对基因治疗等各种应用都有好处,但需要进一步降低脱靶风险并开发有效的递送方法。在这里,我们展示了基于结构的胞嘧啶碱基编辑系统 Target-AID 的合理工程设计,以最大限度地减少其脱靶效应和分子大小。通过密集而仔细的截断,其脱氨酶 PmCDA1 的 DNA 结合域被消除,并引入额外的突变以恢复酶功能。所得的 tCDA1EQ 在与 Cas9 的 N 端融合(AID-2S)或镶嵌结构(AID-3S)中有效,显示出最小化的 RNA 介导的编辑和 gRNA 依赖性/非依赖性的 DNA 脱靶,如在人类细胞中评估的那样。与较小的Cas9直系同源系统(SaCas9)结合,创建在AAV载体大小限制内的胞嘧啶碱基编辑系统。
血友病A(HA)是由凝血因子VIII(FVIII)引起的一种常见出血疾病,长期以来一直被认为是基因治疗研究的有吸引力的靶标。然而,全长F8 cDNA不能通过腺相关病毒(AAV)向量能够充分包装。作为引起严重HA的第二大突变,F8内含子1反转(INV1)是由内骨体内重组引起的,因此大多数F8(外显子2-26)未转录。从理论上讲,可以通过整合启动子和外显子1。为了在体内测试此策略,我们通过删除F8的启动子区域和外显子1来生成HA小鼠模型。供体DNA和CRISPR/SACAS9被包装到AAV载体中,并静脉注射到HA小鼠中。治疗后,恢复F8表达并缩短了激活的部分凝血蛋白时间(APTT)。我们还比较了两个肝脏特异性启动子和两种整合供体向量。使用活性启动子时,所有处理过的小鼠都在尾盘挑战中幸存下来。这是一个体内基因修复策略的第一个报告,有可能治疗HA患者的复发突变。
