课程概述:完成本课程后,您应该能够:回忆射频通信的基本原理和基本设备;识别分配给海军微波通信、单音频系统 (SAS) 的频段以及海军战术数据系统的基础知识。分析海军电传打字机和传真系统的运行、TEMPEST 程序的基础知识以及海军使用的便携式和便携式基本无线电设备。识别基本卫星通信基础知识、舰队 SATCOM 子系统、岸上终端以及基本 SATCOM 设备和机架。识别 Link-11 系统的组成以及 Link-11 通信中的问题。识别 Link 4-A 系统的功能、数据通信中的新技术以及局域网。
o 卫星通信(SATCOM)……构建弹性战略通信架构(即多个轨道,将某物放置在可以移动的位置以防止 EMP 事件)
许多无线电频段都受到中性大气或电离层等介质的影响,HF 频段也不例外。对于航空目的而言,重要的频段是 HF、VHF 和 UHF(卫星通信)。虽然 VHF 信号通常不受电离层效应的影响,但它被限制在视距 (LOS) 范围内。相比之下,HF 频段依赖电离层来实现其天波覆盖模式,从而实现 4 000 - 5 000 公里及以上的超视距 (BLOS) 通信范围(在多跳路径上)。SATCOM 电路受到必要的电离层穿透的影响,即地球表面上方 60 - 2 000 公里的区域,但这些影响是有害的,其中一些影响在规定条件下可能很严重(即在太阳黑子高发期间和在特定地理区域内出现闪烁)。 SATCOM 覆盖范围由视距条件决定,这可能会限制某些配置(即地球同步平台)的极地覆盖范围。通过适当的地面站定位可提供极地的 HF 覆盖范围。
卫星通信 (SatCom) 尤其可以提供近乎即时的语音和数据连接,而商用 SatCom 选项,例如宽带全球区域网络 (BGAN) 或甚小孔径终端 (VSAT),可以快速部署以提供连接,支持从单个用户访问电子邮件到小型指挥中心等一系列需求。卫星的独特功能非常适合在灾难响应期间填补某些通信空白。在受灾地区,由于基础设施缺乏或退化,卫星可能是唯一的通信方式。但是,传统的网络协议难以有效利用卫星容量。没有“灵丹妙药”来提供连接,成功的实施通常是针对特定场景的混合解决方案。
军用卫星可用于多种基本用途,从跟踪军事部署和提供敌方能力图片,到全球定位系统 (GPS) 指挥部队调动和辅助导弹和无人机制导。但还有另一种同样重要的军用卫星——通信卫星 (SATCOM)。SATCOM 使军方能够在所有环境和情况下保持一致的通信,传递情报和监视信息,以便指挥官了解情况并果断采取行动。它们为机动部队提供超视距 (BLOS) 连接,传输实时战场情报。作战人员在移动和距离超过视距时经常会遇到通信困难。为了连接到国防信息系统网络 (DISN),他们传统上必须控制地形并引入电缆,这增加了作战
摘要 — 在国际民航组织 AMS(R)S SARPs 文件 [1] 的范围内,欧洲空中交通管制组织 NEXUS 小组提出了三类(A、B 和 C 类)空中交通管理 (ATM) 通信性能要求,以满足未来海洋和大陆空域的运营需求。这些类别将涵盖首先基于轨迹的运营(SESAR Step2/Class B),以及之后基于性能的运营(SESAR Step3/Class A),同时保持与现有卫星通信 (SatCom) 系统的兼容性,以实现当前海洋地区基于时间的 ATM 运营(SESAR Step1/Class C)。本文旨在介绍 ATM 的 SatCom 系统在长期支持未来通信基础设施 (FCI) 中最苛刻的 SESAR 服务(即全 4D)时能够达到的(Class A)性能值。正如 SESAR 总体规划文件 [2] 所述,该 SatCom 系统被视为通信导航和监视 (CNS) 推动者,主要侧重于为通信服务提供支持。为此,首先确定了在 SESAR P15.2.6 项目范围内定义的长期服务要求。然后,介绍了在 ANTARES(基于卫星的航空资源)项目 [3](ESA Iris 计划的一部分)框架内进行大量模拟后获得的性能值 [4]。在 ANTARES 项目中,已经定义了一种新的通信标准 (CS) 来应对
主要重点是使用当今或接下来的十年中可用的安全卫星通信(下一代SATCOM基础架构),•这还包括SAT-AIS/VDE,基于卫星的ADS-B和其他从太空收集的RF信号。
在介绍和背景材料之后,我们的论文描述了推动紧迫能力需求的潜在未来任务。接下来,我们描述了通信系统描述及其可部署地面入口点 (DGEP) 以及用于与 NE3A 飞机通信的 IP 网络架构。我们讨论了用于验证系统功能和性能的概念开发测试和实验,包括地面和飞行测试,以及多传感器航空航天地面联合情报、监视和侦察 (ISR) 互操作性联盟 (MAJIIC) - 技术互操作性实验 (TIE) (MAJIIC-TIE) 的结果。我们解决了发现的许多问题和挑战,其中一些对运营有影响,包括由于带宽和延迟而导致的限制、可扩展消息传递和存在协议 (XMPP)“闲聊”、加油和转弯期间的链路连接丢失,以及与飞机从未与有机地面元素一起运行有关的问题。下一节提出了克服这些问题的未来改进措施,包括按复杂性和成本增加的顺序,优化低带宽利用率和流量管理的策略(例如,在不同运营商之间进行负载分配),以及集成替代的更高带宽承载器,例如 INMARSAT、UHF SATCOM 和宽带 SATCOM。虽然提供了显着增强的网络连接,但如果以类似于联合监视目标攻击雷达系统 (JSTARS) 的方式实施,这些选项中的最后一个,宽带 SATCOM,将需要对飞机进行重大且昂贵的改造。