1 SBA(基于卫星的增强系统)。包括仅在北美可用的WAA,仅在欧洲可用的EGNO,仅在日本提供的MSA。2的准确性和可靠性可能会因多径,障碍物,卫星几何形状和大气条件而导致异常。始终遵循建议的调查实践。3手持点测量精度取决于用户工作流程。为了获得最佳定位结果,建议使用外部GNSS天线和测量级范围极点。4取决于WAAS/EGNOS/MSAS系统性能5可能受大气条件,信号多径,障碍物和卫星几何形状的影响。6可能会受到大气条件,信号多径和卫星几何形状的影响。初始化可靠性会不断监控,以确保最高质量。7 1- sigma。由于传感器校准质量,温度以及局部磁性干扰的存在,准确性和可靠性可能会遭受异常。始终遵循建议的传感器校准和操作实践。8 1- sigma, @ 20 C,在50 m处至柯达灰卡。 9接收器将正常运行到–40°C,内部电池的额定值为–20°C。实际运行时间将随使用条件而变化。
AIR DATA COMPUTERS: Dual Collins ADC-850E COCKPIT VOICE RECORDER: L3 FA-2100 Solid State CVR COMMUNICATIONS: Triple Collins VHF-4000 Transceivers CONTROL DISPLAY UNITS: Dual Collins CDU-6200 CDUs DISPLAY UNITS: Dual AFD-5220E Adaptive Flight Displays DISTANCE MEASURING EQUIPMENT: Dual Collins DME-4000 Transceivers EMERGENCY LOCATOR TRANSMITTER: Artex C406-N FLIGHT DATA RECORDER: L3 FA-2100 Solid State FDR FLIGHT CONTROL COMPUTER: Four Collins FCC-4006 Computers FLIGHT MANAGEMENT SYSTEM: Triple Collins FMC-6200 FMS Computers GLOBAL POSITIONING SYSTEM: Dual Collins GPS-4000S Receivers w/ SBAS HIGH FREQUENCY: Dual Collins HF-9031A Receiver/Transmitter INERTIAL REFERENCE SYSTEM: Triple Honeywell Laseref V Micro IRS NAVIGATION: Dual Collins NAV-4000 Receivers QUICK ACCESS RECORDER: MiniQAR Mark III RADIO ALTIMETER: Collins ALT-4000 Transceiver TERRAIN AWARENESS AND WARNING: Honeywell Mark V EGPWS TRANSPONDERS: Dual Collins TDR-94D Mode S Transponders TRAFFIC COLLISION ALERT AVOIDANCE SYSTEM: Collins TTR-4000 (TCAS II) WEATHER RADAR: Weather Radar RTA-854
总结性评估方法将包括:正式的书面考试可以包含多项选择问题(MCQ),单一最佳答案问题(SBA),简短的答案问题(SAQ)和论文。文学评论:总结主题,主要理论,假设和关键作家的工作论文:开发论证或详细说明研究信息以提供对主题的审查。论文可能在考试条件下被限制基于方案的论文:交互式教学策略,使用现实生活中的情况和叙述来吸引学习者。学生将不得不提出关于如何在这种情况下进行的“最佳”决定。报告,海报,演示文稿:分析和评估信息并适当介绍并向他人解释结论。数据分析:使用正确的分析方法来处理和解释数据并在报告中介绍结果。患者沟通:与患者讨论基因检测,包括对患者及其家人的影响以及同意问题并写一封结果。研究项目:在监督下设计和实施一个研究项目,包括对数据的获得,分析和讨论,遵守适当的道德原则和批准。多学科团队讨论:围绕学生主导的案例演示和多学科团队的重点评估的协作和互动过程
社会,是人类面临的主要挑战之一,今天比 2003 年更加严峻,当时各国政府和国际组织致力于描绘一个未来愿景,即以协调、全面和持续的地球观测为基础,为人类利益做出决策和采取行动。2005 年,随着地球观测组织 (GEO) 的成立,迈出了实现这一愿景的第一步,该组织的主要目标是创建全球对地观测系统 (GEOSS)。在过去的十年中,GEO 在开发 GEOSS、倡导广泛、开放的数据共享和访问、发起重大全球监测计划、加强区域协调以及建立强大而多样化的社区方面取得了相当大的成功。在这些成就的基础上,GEO 部长们认识到需要进一步共同努力,以最大限度地利用地球观测资源,因此在 2014 年 1 月的日内瓦峰会上将 GEO 的任务期限延长了第二个十年。部长们决心“提高 GEO 行动的有效性,扩大包括决策者在内的利益相关方的参与和合作,并为 GEOSS 的持续发展和运作提供持续的资源”,并要求在下届部长峰会之前制定一项实现这些目标的新计划。随后产生的“GEO 战略计划 2016-2025:实施 GEOSS”建立在强大的 GEO 基础之上
第 1 章。一般信息。1-1。目的。本咨询通告 (AC) 为已安装的定位和导航设备的适航审批提供指导材料。定位和导航设备可用于多种功能,例如导航、自动相关监视和/或地形感知和警告系统。本 AC 涉及以下设备:a.全球定位系统 (GPS) 传感器或独立导航设备,包括结合机载增强系统 (ABAS)、卫星增强系统 (SBAS) 或地面增强系统 (GBAS) 的设备。b.区域导航 (RNAV) 集成来自多个导航传感器的数据,例如全球导航卫星系统 (GNSS)、惯性参考单元 (IRU) 和测距设备 (DME)。c. RNAV 旨在用于所需导航性能 (RNP) 操作,包括高级功能和所需 RNP 授权 (AR),以前称为所需特殊飞机和机组人员授权 (SAAAR)。注意:RNP AR 以前称为 RNP SAAAR。名称已更改为 RNP AR 以实现国际协调,但可能尚未在所有文件中标准化。d. 气压垂直导航 (baro-VNAV) 设备。e. 本 AC 不涉及计划中或目前正在建设的新卫星星座。当有足够的文档支持多星座设备时,本 AC 将会更新。未来的 AC 90-101 和 AC 90-105 修订将删除适航指导。f. 本 AC 结合了 AC 90-101A(带 SAAAR 的 RNP 程序批准指南)和 AC 90-105(美国国家空域系统中的 RNP 运行和气压垂直导航批准指南)中包含的适航性考虑,这是将所有定位和导航设备以及 RNP 适航指南整合到一个 AC 中的必要第一步。本 AC 不会取代 RNP 90 系列 AC 中的运行指南。但是,本 AC 确实通过合并和更新第 1-3 段中列出的 AC 所包含的信息来取代它们。g. 本 AC 不是强制性的,也不是法规。本 AC 描述了遵守适用法规的可接受方法,但不是唯一方法。h. 本 AC 提供了用于新批准的指导信息。本 AC 无意修改、变更或取消现有设备设计或适航批准。
AW3D ALOS 世界 3D(近全球高度模型) AW3D30 点间距为 30 米的 AW3D(免费提供高度模型) CAP 共同农业政策(欧盟政策) CCD 电荷耦合器件 CMOS 互补金属氧化物半导体 CORINE 环境信息协调 CORS 连续运行参考站(用于精确 GNSS 定位) DInSAR 差分干涉合成孔径雷达 DSM 数字表面模型(可见表面高度) DTM 数字地形模型(裸地高度) EASA 欧洲航空安全局 EGNOS 欧洲地球静止导航叠加服务 FMC 前向运动补偿 FOV 视场 GCP 地面控制点 GDEM2 ASTER 全球数字高程模型(免费提供 DSM) GNSS 全球导航卫星系统(GPS、GLONASS、伽利略、北斗等) GSD 地面采样距离 HALE 高空长航时 ICAO 国际民用航空组织 InSAR 干涉合成孔径雷达 JRC 欧盟委员会联合研究中心 LiDAR 光探测与测距 - 也称为激光扫描仪 LOD 细节层次(用于城市地图细节) LPIS 地块信息系统 MEMS 微机电系统 - 用于姿态测定 Mpix 百万像素(传感器像素数) NDVI 归一化差异植被指数 NIR 近红外 OCS GE 大规模土地覆盖和土地利用数据库(大尺度太阳辐射职业) PPK 后处理 运动 GNSS
美国全球定位系统 (GPS) 标准定位服务 (SPS) 由空间定位、导航和授时 (PNT) 信号组成,这些信号免费提供,供全球和平民用、商业和科学用途使用。本 SPS 性能标准 (SPS PS) 规定了广播信号参数和 GPS 星座设计方面的 SPS 性能水平。美国政府致力于达到并超过本 SPS PS 中规定的最低服务水平,这一承诺已编入美国法律 (10 U.S.C.2281(b))。自 1993 年 GPS 初始运行能力 (IOC) 以来,实际 GPS 性能一直达到并超过 SPS PS 中规定的最低性能水平,用户通常可以期待性能比此处描述的最低水平有所提高。例如,以目前 (2007) 的空间信号 (SIS) 精度,设计良好的 GPS 接收器在 95% 的时间内已经实现了 3 米或更高的水平精度和 5 米或更高的垂直精度。许多美国机构持续监测 GPS SPS 的实际性能,包括联邦航空管理局 (FAA),该机构在其国家卫星试验台 (NSTB) 网站 ( http://www.nstb.tc.faa.gov/ ) 上发布季度性能分析报告。鼓励感兴趣的读者参考此来源和其他来源以了解最新的 GPS 性能。作为美国对全球 GPS 用户社区承诺增强的另一个例子,美国总统于 2007 年宣布,不会将选择性可用性内置于现代化的 GPS III 卫星中。尽管 GPS 将来会提供三种新的现代化民用信号:L2C、L5 和 L1C,但此版本 SPS PS 中的性能规范仅适用于 L1 (1575.42 MHz) 粗/捕获 (C/A) 信号的用户,因为这是目前唯一达到完全运行能力的民用 GPS 信号。此外,本文档介绍了具有超过 24 颗卫星的“可扩展 24 槽”GPS 星座,“基线 24 槽”GPS 星座定义与上一版本的 SPS PS 保持不变。随着 GPS 对其民用服务进行现代化改造,SPS PS 将定期更新。此版本的 SPS PS 修订并取代了 2001 年 10 月 4 日发布的上一版本,并达到或超过了上一版本的所有性能承诺。鼓励对 GPS 教程信息感兴趣的读者参考有关该主题的大量参考资料。此次更新的重大变化包括 SIS 距离精度的最低水平提高了 33%,从 6 米均方根 (rms) 精度提高到 4 米 rms(7.8 米 95%),以及增加了 SIS 距离速度精度和距离加速度精度的最低水平,这些在 SPS PS 的先前版本中均未指定。除了指定 GPS 最低性能承诺外,SPS PS 还是一份旨在补充 GPS SIS 接口规范 (IS-GPS-200) 的技术文档。最后,根据美国天基 PNT 政策 (http://pnt.gov/policy/),SPS PS 强调了美国致力于与全球导航卫星系统 (GNSS) 和星基增强系统 (SBAS) 提供商合作,以确保 GPS 与新兴系统的兼容性和互操作性,供全球和平民用。
美国全球定位系统 (GPS) 标准定位服务 (SPS) 由空间定位、导航和授时 (PNT) 信号组成,这些信号免费向全球的和平民用、商业和科学用途提供,用户无需支付直接费用。此 SPS 性能标准 (SPS PS) 规定了广播信号参数和 GPS 星座设计方面的 SPS 性能水平。美国政府致力于达到并超过此 SPS PS 中规定的最低服务水平,这一承诺已编入美国法律 (10 USC 2281(b))。自 1993 年 GPS 初始运行能力 (IOC) 以来,实际 GPS 性能一直达到并超过 SPS PS 中规定的最低性能水平,用户通常可以期待性能超过此处描述的最低水平。例如,以当前 (2007) 的空间信号 (SIS) 精度,精心设计的 GPS 接收器在 95% 的时间内实现了 3 米或更高的水平精度和 5 米或更高的垂直精度。许多美国机构都在持续监测 GPS SPS 的实际性能,其中包括联邦航空管理局 (FAA),它在其国家卫星试验台 (NSTB) 网站 ( http://www.nstb.tc.faa.gov/ ) 上发布季度性能分析报告。我们鼓励感兴趣的读者参考此网站和其他来源,了解最新的 GPS 性能。作为美国对全球 GPS 用户社区承诺的进一步加强的另一个例子,美国总统于 2007 年宣布,将不会在现代化的 GPS III 卫星中内置选择性可用性。虽然 GPS 将来会提供三种新的现代化民用信号:L2C、L5 和 L1C,但此版本 SPS PS 中的性能规格仅适用于 L1 (1575.42 MHz) 粗/捕获 (C/A) 信号的用户,因为这是目前唯一达到完全操作能力的民用 GPS 信号。此外,本文件还介绍了一种具有超过 24 颗卫星的“可扩展 24 槽”GPS 星座,并且“基线 24 槽”GPS 星座定义与 SPS PS 的先前版本保持不变。随着 GPS 对其民用服务的现代化,SPS PS 将定期更新。此版本的 SPS PS 修订并取代了 2001 年 10 月 4 日发布的先前版本,并达到或超过了先前版本的所有性能承诺。此次更新的重大变化包括 SIS 距离精度的最低水平提高了 33%,从 6 米均方根 (rms) 精度提高到 4 米均方根 (7.8 米 95%),以及增加了 SIS 距离速度精度和距离加速度精度的最低水平,这些在 SPS PS 的先前版本中没有指定。除了指定 GPS 最低性能承诺外,SPS PS 还可作为旨在补充 GPS SIS 接口规范 (IS-GPS-200) 的技术文档。鼓励对 GPS 教程信息感兴趣的读者参考有关该主题的大量参考资料。最后,根据美国天基 PNT 政策 (http://pnt.gov/policy/),SPS PS 强调美国致力于与全球导航卫星系统 (GNSS) 和星基增强系统 (SBAS) 提供商合作,以确保 GPS 与新兴系统的兼容性和互操作性,供全球和平民用。
本报告的目标: 2004 年签署的美国-欧盟 GPS-伽利略合作协议为美国和欧盟在卫星导航领域的合作活动确立了原则。该协议预见到一个工作组来促进在下一代民用卫星导航和授时系统的设计和开发方面的合作。这项工作成为工作组 C (WG-C) 的重点。WG-C 的目标之一是开发基于 GPS-伽利略的生命安全服务应用。为此,WG-C 于 2010 年 7 月 1 日成立了 ARAIM 技术小组 (ARAIM TSG)。ARAIM TSG 的目标是在双边基础上研究 ARAIM(高级接收机自主完整性监控)。进一步的目标是确定 ARAIM 是否可以成为支持全球空中导航的多星座概念的基础。具体而言,ARAIM 应支持航路和终端区飞行;它还应支持机场进近操作期间的横向和垂直引导。在这些操作中,航空的全球进近引导是最雄心勃勃的目标。这些飞机操作被称为水平导航的定位器精度 (LP) 和垂直导航的定位器精度垂直 (LPV)。LPV-200 表示,这种引导应支持低至接地点以上 200 英尺高度的决策高度 (DA) 的进近操作。ARAIM TSG 重点关注