这款透明油性精华液可瞬间改变您受损的头发和头皮,让它们焕发光彩、滋润滋养。AlgaPūr™* 高稳定性高油酸 HSHO 海藻油有助于保护和恢复每根发丝,控制毛躁,赋予头发光泽,并为皮肤和头发纤维补充水分。这款无硅配方将 AlgaPūr™* 高稳定性高油酸 HSHO 海藻油和椰子油与 Schercemol™* CATC 酯和 Schercemol™* DISD 酯混合,提供透明柔软的质地,同时修复和滋养头发和头皮。Oilkemia™* 5S 聚合物将油变成透明光滑的凝胶,而 Glucate™* DO 乳化剂有助于减少脱水收缩。Hydramol™* PGPD 酯促进水分扩散和产品冲洗。健康头发所需要的一切。将其作为免洗护发素涂抹在头发和头皮上,进行深层护理。
连续暴露于构成空气污染的颗粒物可能会导致头皮和头发上的积累以及体内的氧化应激,这可能会导致头皮问题和头发损伤。我们遵循系统的审查清单,以研究空气污染对头发和头皮的影响以及导致自由基和氧化应激的机制。利用在线数据库来识别系统的评论,荟萃分析和范围评论,626篇文章被入围,并使用Prisma Flowchart选择了54篇文章。研究的结果详细介绍了当头发和头皮不断暴露于空气污染物成分时可能发生的相关条件和机制。具体来说,我们发现细颗粒物会导致毛发损伤和脱发,脂肪性眼皮炎和毛囊炎症。最后,我们引入了具有抗炎作用的物质,可以抵消空气污染物引起的头发和与头皮相关的疾病,并为将来的研究方法和方向带来了影响。
摘要——疼痛是一种综合现象,伴随着大脑中感觉和情境过程的动态相互作用,通常与可检测到的神经生理变化有关。大脑活动记录工具和机器学习技术的最新进展引起了用于客观和基于神经生理学的疼痛检测的神经计算技术的研究和开发。本文提出了一种基于脑电图 (EEG) 和深度卷积神经网络 (CNN) 的疼痛检测框架。通过招募 10 名慢性背痛患者,研究了 CNN 用于区分诱发疼痛状态和静息状态的可行性。实验研究分两个阶段记录 EEG 信号:1. 运动刺激 (MS),通过执行预定义的运动任务来诱发背痛;2. 视频刺激 (VS),通过观看一组视频片段来诱发背痛感知。多层 CNN 对静息状态和疼痛状态下的 EEG 片段进行分类。这种新方法具有高性能和稳定性,因此对于构建强大的疼痛检测算法具有重要意义。我们的方法的受试者工作特征曲线下面积 (AUC) 分别为 MS 和 VS 中的 0.83 ± 0.09 和 0.81 ± 0.15,高于最先进的方法。还分析了亚脑区,以检查与疼痛检测相关的不同脑拓扑结构。结果表明,MS 引起的疼痛
图 4 全头部 OPM 和混合 OPM/EEG 设计。(a – d)OPM 和混合 OPM/EEG 系统的误差指标与所考虑的头皮磁力仪数量的关系。两个系统的 r 95 的中值和最大值均与市售阵列(不同颜色)相对应的指标一起显示,这些指标是恒定的并且与 OPM 的数量无关。(e – g)仅 OPM(e)、混合 OPM/EEG(f)和完整 OPM ABC 160(g)阵列的等效不确定半径的空间分布,前两个阵列采用 100 个头皮磁力仪。(h – i)所有源的等效不确定半径的归一化直方图,采用线性(h)和半对数(i)尺度。(j)三个系统的 r 95 平均值与源深度的关系(每 5 毫米分箱一次)。 (k – l)最佳混合 OPM/EEG 阵列传感器位置(k)和布局(l)。EEG 电极和 OPM 分别用蓝点和红点表示
功能性近红外光谱 (fNIRS) 通过监测血液中氧合血红蛋白 ( O 2 Hb ) 和脱氧血红蛋白 ( HHb ) 的浓度变化,能够无创地测量人类大脑活动。1 – 4 fNIRS 已经从一种基础研究工具发展成为一种广泛用于研究非约束环境中大脑活动的技术。5、6 尽管其用途广泛,但仍存在一些挑战,特别是连续波 fNIRS 对非神经元来源的血流动力学变化的敏感性。 2、7-10 这些通常被称为生理“噪音”或“干扰”,包括全身活动,例如心脏脉动(1 至 2 Hz)、呼吸(0.2 至 0.4 Hz)、低频振荡(约 0.1 Hz)和极低频振荡(0.01 至 0.05 Hz),11 以及通过交感神经活动导致的血流增加。12 这些伪影产生的信号变化可能会模仿或掩盖真实的任务诱发的血流动力学反应(HR),并可能导致假阳性或假阴性。8、10、13 近年来,fNIRS 社区已经承认了这一挑战,并认识到了其重要性。 8 尽管对非神经元信号的敏感性特定于 fNIRS 的测量原理,但所有通过血流动力学变化推断大脑活动的技术,即 fNIRS、功能性磁共振成像和正电子发射断层扫描,都会受到影响。作为低频振荡的主要贡献者,Mayer 波 (MW) 是动脉血压中的节律性血流动力学振荡,14 并且大概是某些受试者无法恢复功能性心率的主要原因。15 当针对特定测量协议和任务/刺激持续时间进行适当选择时,可以使用低通滤波器去除心脏和呼吸信号。16、17 其他系统信号的去除更加困难,并且需要应用更复杂的信号处理,因为它们的频率内容与功能性心率重叠。18 – 20 短通道回归方法已被提出作为将大脑活动与全身活动分离的一种方法。 21 , 22 通过短间隔 (SS) 通道(通常 < 15 毫米,理想长度为 8.4 毫米 23 , 24 )单独测量头皮血流动力学,可获得主要包含全身和最小脑活动的信号。为了从长间隔 (LS) fNIRS 测量(通常为 30 毫米)中提取大脑的贡献,需要从 LS 信号中减去 SS。短通道回归已被证明可以显著提高恢复的功能性脑活动的质量。18 , 21 , 22 , 25
内上皮片上的图案形成。4-8 在这些例子中,外部或浅层的约束或限制是使更深层结构(在生理压缩下)继续正常发育的关键机械因素。9,10 通过结合实验和计算数据的“形态力学”方法,Taber 等人 11,12 发现鸡视杯形成过程中的内陷是由外胚层和细胞外基质等外部限制因素驱动的。在发育中的脊椎动物大脑中,最近已经探索了壁内细胞和组织力学。13,14 已经讨论了成长中的大脑对周围颅骨或颅腔形成的可能生物力学影响(在成骨细胞增殖和骨化等事件中,通过拉伸经历这些事件的细胞)。 15 相反,有人提出,骨化的头骨(作为硬囊)调节大脑形态,包括大脑皮层的脑回形成,16 尽管实验和数学研究表明脑回形成可能通过大脑固有的机制进行物理处理。17-19 先前关于哺乳动物大脑-头骨机械关系的研究主要集中在骨化/矿化发生后的阶段。在早期(即成骨前)阶段,对鸡胚进行的研究提出了一个模型,其中早期神经管弯曲的出现(最前端的前脑向腹侧弯曲的现象)可能是由腹侧底层脊索或前肠施加的可能物理限制来解释的,这些结构向前延伸的程度小于前脑,20,21
功能性近红外光谱 (fNIRS) 通过监测血液中氧合血红蛋白 ( O 2 Hb ) 和脱氧血红蛋白 ( HHb ) 的浓度变化,能够无创地测量人类大脑活动。1 – 4 fNIRS 已经从一种基础研究工具发展成为一种广泛用于研究非约束环境中大脑活动的技术。5、6 尽管其用途广泛,但仍存在一些挑战,特别是连续波 fNIRS 对非神经元来源的血流动力学变化的敏感性。 2、7-10 这些通常被称为生理“噪音”或“干扰”,包括全身活动,例如心脏脉动(1 至 2 Hz)、呼吸(0.2 至 0.4 Hz)、低频振荡(约 0.1 Hz)和极低频振荡(0.01 至 0.05 Hz),11 以及通过交感神经活动导致的血流增加。12 这些伪影产生的信号变化可能会模仿或掩盖真实的任务诱发的血流动力学反应(HR),并可能导致假阳性或假阴性。8、10、13 近年来,fNIRS 社区已经承认了这一挑战,并认识到了其重要性。 8 尽管对非神经元信号的敏感性特定于 fNIRS 的测量原理,但所有通过血流动力学变化推断大脑活动的技术,即 fNIRS、功能性磁共振成像和正电子发射断层扫描,都会受到影响。作为低频振荡的主要贡献者,Mayer 波 (MW) 是动脉血压中的节律性血流动力学振荡,14 并且大概是某些受试者无法恢复功能性心率的主要原因。15 当针对特定测量协议和任务/刺激持续时间进行适当选择时,可以使用低通滤波器去除心脏和呼吸信号。16、17 其他系统信号的去除更加困难,并且需要应用更复杂的信号处理,因为它们的频率内容与功能性心率重叠。18 – 20 短通道回归方法已被提出作为将大脑活动与全身活动分离的一种方法。 21 , 22 通过短间隔 (SS) 通道(通常 < 15 毫米,理想长度为 8.4 毫米 23 , 24 )单独测量头皮血流动力学,可获得主要包含全身和最小脑活动的信号。为了从长间隔 (LS) fNIRS 测量(通常为 30 毫米)中提取大脑的贡献,需要从 LS 信号中减去 SS。短通道回归已被证明可以显著提高恢复的功能性脑活动的质量。18 , 21 , 22 , 25
摘要 - 头皮和颅内脑电图(EEG)对于诊断脑部疾病至关重要。但是,头皮脑电图(seeg)被头骨衰减并被伪像污染。同时,颅内脑电图(IEEG)几乎没有文物,并且可以捕获所有大脑活动,而无需任何衰减,因为靠近大脑。在这项研究中,目的是通过将SEEG映射到IEEG来提高SEEG的性能。为此,我们在这里使用生成的对抗网络开发了一个深神经网络,以估算IEEG的SEEG。所提出的方法适用于Seeg和IEEG,并从癫痫发作中同时记录以检测间隔癫痫样放电(IEDS)。所提出的方法检测IEDS的精度为76%的IED,并以最先进的方法为止。此外,它至少比比较方法少十二倍。
脑电图 (EEG) 广泛用于诊断癫痫、神经退行性疾病和睡眠相关疾病等神经系统疾病。正确解释 EEG 记录需要训练有素的神经科医生的专业知识,而这种资源在发展中国家非常稀缺。神经科医生花费大量时间筛选 EEG 记录以寻找异常。由于 EEG 测试的产量低,大多数记录结果完全正常。为了最大限度地减少这种时间和精力的浪费,可以使用自动算法提供诊断前筛查,以区分正常和异常 EEG。数据驱动的机器学习提供了一种前进的方向,然而,现代机器学习算法的设计和验证需要经过适当策划的标记数据集。为了避免偏见,基于深度学习的方法必须在来自不同来源的大型数据集上进行训练。这项工作提出了一个新的开源数据集,名为 NMT 头皮 EEG 数据集,由来自不同参与者的 2,417 条记录组成,跨越近 625 小时。每条记录都由一组合格的神经病学家标记为正常或异常。还包括患者的性别和年龄等人口统计信息。我们的数据集主要针对南亚人口。我们在 NMT 上实施和评估了几种为 EEG 诊断前筛查而开发的最先进的深度学习架构,并将其与著名的天普大学医院 EEG 异常语料库的基线性能进行了比较。我们还研究了基于深度学习的架构在 NMT 和参考数据集上的泛化。发布 NMT 数据集是为了增加 EEG 数据集的多样性,并克服 EEG 研究缺乏准确注释的公开可用数据集的问题。
方法:进行了这种前瞻性,介入,开放标签,单中心,单臂临床研究,以评估抗Dandruff血清对头皮屑管理的疗效。伦理批准是从ACEAS独立伦理委员会获得的,并在任何临床程序之前从所有参与者那里获得了书面知情同意。使用粘附的头皮剥落评分(ASF)评估头皮屑和脂肪皮炎的严重程度,以及使用Caslite Nova仪器进行皮肤病学评估和光学化图分析。使用SPSS(V29.0.1.0)和Microsoft Excel 2019进行统计分析,其显着性水平为5%。总共招募了32名个人,28名18-60岁的健康成年参与者完成了这项研究,主要重点是在第1天30分钟和在血清使用8天后评估头皮健康的改善。