摘要在这里,我们研究了PGP-SELBOX NCFET(在负电容FET中有选择性掩埋的氧化物上的部分接地平面)对FDSOI的负电容的影响。将铁电层放置在PGP-Selbox NCFET的栅极堆栈中,以产生负电容现象。铁电(Fe)材料与介电材料相似,但在其极化特性方面存在差异。fe-HFO 2由于其足够的极化速率具有高介电能力和更好的可靠性,因此将其用作铁电材料。分析了铁电材料参数的影响,例如强制场(E C)和恢复极化(P R)对NCFET的电容匹配的影响。模拟结果表明,R PE因子是P R与E C的比率,与更好的电容匹配密切相关。另外,还探索了铁电层厚度的变化对平均亚阈值摇摆(SS)的变化。还分析了PGP-Selbox NCFET的短通道效应(V Th rolo虫和DIBL)与铁电(T FE)的厚度之间的关系。模拟结果清楚地表明,PGP-SELBOX NCFET的SCES减少了,而I OFF fdsoi NCFET上的I OFF I OFF IN I ON IN I ON IN CES。对于拟议设备的铁罗 - 电动参数的优化值,在T Fe = 5nm时发现为50 mV/十年,比FDSOI NCFET(56 mV/十年)少。
量子相变及相关现象 强关联的理论模型和方法 强关联系统中的非平衡现象 非常规超导性 新材料中的超导性 量子磁性、斯格明子和挫折 金属-绝缘体跃迁 用于 SCES 研究的大型研究设施和新技术 SCES 的设备和应用 具有几何特性的关联材料 狄拉克/外尔半金属和拓扑非平凡材料 二维材料 关联相的费米面和电子结构 关联系统中的强自旋轨道相互作用 多铁性材料及相关材料 量子比特的材料和设备 纳米级的突发现象 材料设计和新型先进材料
随着 CMOS 技术缩放即将达到基本极限,对具有较低工作电压的节能器件的需求巨大。负电容场效应晶体管 (NCFET) 具有放大栅极电压的能力,成为未来先进工艺节点的有希望的候选者。基于铁电 (FE) HfO 2 的材料具有令人印象深刻的可扩展性和与 CMOS 工艺的兼容性,显示出将其集成到 NCFET 中以实现纳米级高性能晶体管的可行性。由于引入了 NC 效应,基于 HfO 2 的 NCFET 中的短沟道效应 (SCE) 与已经经过广泛研究的传统器件不同 [1]。具体而言,漏极诱导势垒降低 (DIBL) 在决定 SCE 的严重程度方面起着关键作用,在 NCFET 中表现出相反的行为。尽管人们已认识到施加电压对 NCFET 性能的影响 [ 2 ],但栅极电压扫描范围(V GS 范围)对先进短沟道 NC-FinFET 中的 DIBL 的影响仍然缺乏研究。
栅极工程 TM-DG 异质结构 MOSFET 上的势垒厚度以抑制 SCE 和 SOC 应用的模拟、RF、线性性能调查” IEEE 电子设备加尔各答会议,EDKCON-2018,(IEEE XPLORE 印刷中)2018 年 11 月 24-25 日,加尔各答。29. SMBiswal、B.Baral、Sanjit Kumar Swain、SKPati “性能分析
许多学者对人类的未来深感忧虑。他们担心在人工智能时代,人类的命运将掌握在更聪明的机器人手中。斯蒂芬·霍金、埃隆·马斯克、比尔·乔伊斯和数百名科学家在 2015 年的一封公开信中表达了这种深切的担忧(Hawking,2015)。他们的担忧是有道理的,因为一旦机器人成为一个物种,人类就会陷入大麻烦。在两个物种之间,智力较低的物种注定要被智力较高的物种控制和支配。想想在当今人类主导的世界中,猪、老虎和狗的命运。然而,人工智能的奇点意味着他们所担心的事情不会成为现实。他们可以放心。没有自我意识和 SCE 的机器人不会形成一个物种,也不会具有统治的内在驱动力。
4. 科学会议组织 2012 - 至今 强关联电子系统(SCES)国际顾问委员会 2014 - 至今 量子材料研讨会(QMS)程序委员会 2012 - 至今 国际超导和磁学会议程序委员会 2016 - 2018 超导最新进展国际研讨会组织者 2016 量子材料研讨会(QMS)组织者 2011 2011 韩国超低温(ULT)组织委员会 2011 韩国 SKKU-APCTP 重电子和新量子相国际研讨会组织者 5. 奖学金、荣誉、奖项 2020 韩国超导学会杰出研究奖 2016 韩国物理学会(KPS)研究员 2016 韩国超导学会三东杰出研究成就奖2015 韩国未来规划科学部研究发展奖 2011 韩国成均馆大学青年研究员 2009 韩国 POSCO TJ Park 基金会 POSCO 贝塞麦科学研究员 2007 美国洛斯阿拉莫斯国家实验室博士后杰出表现奖 2007 美国韩国物理学家协会杰出青年研究奖 6. 重要科学成就
从 I on /I off 电流比、跨导、亚阈值斜率、阈值电压滚降和漏极诱导势垒降低 (DIBL) 等方面评估了一种新型栅极全场效应晶体管 (GAA-FET) 方案的可靠性和可控性。此外,借助物理模拟,全面研究了电子性能指标的缩放行为。将提出的结构的电气特性与圆形 GAA-FET 进行了比较,圆形 GAA-FET 之前已使用 3D-TCAD 模拟在 22 nm 通道长度下用 IBM 样品进行了校准。我们的模拟结果表明,与传统的圆形横截面相比,扇形横截面 GAA-FET 是一种控制短沟道效应 (SCE) 的优越结构,并且性能更好。2020 作者。由 Elsevier BV 代表艾因夏姆斯大学工程学院出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
•简介概述了文件的范围和目的,涵盖安全案件的设施,批准和托管详细信息的立法,主要标准和实践守则,有关安全案件和其他行政要求的通信的地址(第3.1节)。•操作说明提供了该设施,其功能和控制系统的简洁概述(第3.2节)。•安全管理系统(SMS)提供了对维护设施和工人安全的管理系统的详细说明。这包括安全性关键要素(SCE)的绩效标准,并支持正式安全评估(FSA)的发现(第3.3节)。•正式的安全评估提供了对设施的风险管理方法的详细说明,风险评估咨询的摘要,已确定的重大事故事件的详细信息(MAES),降低风险SFAIRP和BOWTIE图表(第3.4节)。•紧急响应计划提供了设施的ERP的详细说明,包括ERP符合WHS Pageo法规的证据(第3.5节)
摩尔定律的进步以及电子技术的不断发展和蓬勃发展的发展为综合电路(IC)行业提供了巨大的动力和挑战。[1]最先进的技术已将场效应晶体管(FET)的有效尺寸降低至低于10 nm,甚至均低于5 nm。同时,抑制短通道效应(SCE)并导致州外泄漏电流的增加已成为传统平面转换器的主要技术挑战。[2]创新的设备结构已开发出解决这些问题,包括FinFET,[3,4]全方位的FET(GAAFET),[5–7]多桥通道FET(MBC-FET)和互补的FET(C-FET)。[8-10]通道的增强栅极控制能力导致SCES和电流泄漏减少。finfet已成功地应用于低于10 nm的节点,同时面临由于扩展缩小的高度宽度比的技术挑战。[11]基于GAIFET的MBC-FET结构已成为下一代Sub-5 nm节点的有前途的候选人,C-FET将成为Sub-2 NM节点的强大替代品。但是,现有的基于SI的MBC和C-FET面临着诸如非均匀纳米片几何形状和驱动式折衷的挑战。[8]整合P-和N型FET的复杂处理也使整体集成非常困难,成为单个SI底物。[9,10]
•简介概述了文件的范围和目的,涵盖安全案件的设施,批准和托管详细信息的立法,主要标准和实践守则,有关安全案件和其他行政要求的通信的地址(第3.1节)。•操作说明提供了该设施,其功能和控制系统的简洁概述(第3.2节)。•安全管理系统(SMS)提供了对维护设施和人员安全的管理系统的详细说明。这包括安全性关键要素(SCE)的性能标准,并支持正式安全评估中的发现(第3.3节)。•正式的安全评估(FSA)提供了针对该设施的风险管理方法的详细说明,风险评估咨询/研讨会的摘要,确定的重大事故事件(MAES)的详细信息(MAES),降低风险SFAIRP和BOWTIE图的演示(第3.4节)。•紧急响应计划(ERP)提供了该设施的紧急响应计划的详细说明,包括证据表明紧急响应计划符合立法要求(第3.5节)。