我们先前发现,通过麦芽糖加入A和A-葡萄糖苷酶抑制剂Miglitol(麦芽糖/Miglitol)通过glut2抑制剂抑制剂phloretin抑制小鼠中的A--葡萄糖苷酶抑制剂Miglitol(麦芽糖/Miglitol)。此外,麦芽糖/miglitol抑制了葡萄糖依赖性胰岛素多肽(GIP)通过涉及小型脂肪酸(SCFA)的机制隔离,该机制由微生物组产生。然而,未知是否通过调节SCFA来抑制GLP-1分泌。在这项研究中,我们检查了腓果素对体外和体内微生物组释放的影响。在大肠杆菌中,当用麦芽糖/米格列醇培养时,乙酸盐释放到培养基中。在小鼠中,菲洛莱汀抑制麦芽糖/米格列醇诱导的SCFA在门静脉中增加。此外,与二氯化津在小鼠中共同施用时,α-甲基-D-葡萄糖(MDG)是GLUT2的较差的GLP-1分泌,这显着增加了GLP-1分泌,这表明GLUT2对于葡萄糖/菲洛兹蛋白诱导的GLP-1分泌不是必不可少的。MDG提高了门户网站SCFA水平,从而增加了GLP-1分泌并抑制小鼠的GIP分泌,这表明MDG是可代谢的,而不是哺乳动物,而是微生物群。总而言之,建议通过抑制微生物组产生的SCFA抑制麦芽糖/米格列醇诱导的GLP-1分泌。©2022 Elsevier Inc.保留所有权利。
牙周疾病会诱导营养不良,这是微生物群中的组成和功能改变。牙周疾病引起的营养不良会引起全身性炎症,并可能影响移植免疫。在这里,我们使用了同种异性皮肤移植的小鼠模型,其中检查了与牙周疾病相关的肠道营养不良对移植免疫的影响,在该模型中,小鼠口服牙周病原体卟啉虫牙龈(PG)。持续6周,PG组口服PG,而对照组口服接受磷酸盐缓冲盐溶液。之后,两组都接受了同种异性皮肤移植。16 S rRNA分析表明,口服PG显着增加了产生属的三种短链脂肪酸(SCFA)。SCFA(乙酸盐和丙酸)水平在PG组中显着更高(P = 0.040和P = 0.005)。通过流动仪仪,PG组中外周血和脾脏中与SCFA呈正相关的调节T细胞与SCFA呈正相关的调节T细胞与总CFAS呈正相关(P = 0.002和P <0.001)。最后,口服PG显着延长了皮肤移植物的生存率(P <0.001),并减少了移植的皮肤移植物的病理炎症。总而言之,牙周病原体诱导的肠道营养不良可能通过增加的SCFA和调节性T细胞来影响移植免疫。(198个单词)。
帕金森氏病(PD)是一种复杂的神经退行性疾病,通常与胃肠道(GI)功能障碍有关。胃肠道是多种微生物的所在地,其中细菌可以通过各种机制影响宿主。可以在肠道中作用,但也可以通过现在确定为微生物群 - 甲状脑轴轴的大脑中发挥作用。在患有PD的人中,肠杆菌组成通常与非PD个体不同。除了组成变化外,PD在PD中还改变了肠道 - 微生物的代谢活性。特别是,经常据报道,短链脂肪酸(SCFA)的关键生产者以及SCFA本身的浓度在粪便和PD患者的血液中被改变。这些SCFA,其中包括丁酸酯是宿主的必需营养素,是胃肠道上皮细胞的主要能源。此外,丁酸酯在调节各种宿主反应方面起着关键作用,尤其是与炎症有关。研究表明,丁酸水平的降低可能在PD的发作和进展中起关键作用。此外,已经表明,通过益生菌,益生元,丁酸钠补充钠和粪便移植能够对患有PD的丁酸酯水平恢复,可以对运动的运动和非运动型疾病产生有益的作用。本评论概述了PD患者中改变的肠杆菌组成和相应的代谢产物产生的证据,特别关注SCFA丁酸。除了在临床和临床前报告中介绍有关SCFA的最新研究外,还讨论了在治疗环境中使用基于微生物组的方法靶向丁酸酯产生的证据。
摘要:短链脂肪酸(SCFA)构成了最大的肠道微生物发酵产物。虽然大多数营养物质的吸收发生在小肠中,但不可消化的饮食成分(例如纤维)到达结肠,并由肠道微生物组处理,以产生各种影响宿主生理学的代谢产物。大量研究将SCFA视为宿主健康的关键调节剂,例如调节肠易激综合征(IBS)。但是,仍需要强大的检测方法和定量方法来满足探测肠道宿主健康范式复杂相互作用的生物学研究需求。在这项研究中,开发了使用2-PA衍生化的敏感,快速通量和易于扩展的UHPLC-QQQ-MS平台,用于定量肠道微生物衍生的SCFA,相关的代谢物和同位素标记的同源物。然后通过研究小鼠喂养研究,人类粪便生物反应器和粪便/细菌发酵的同位素标记的饮食碳水化合物的粪便中的SCFA的产生来证明该平台的实用性。总体而言,这项研究中提出的工作流是快速扩大肠道微生物组和精确营养研究领域的宝贵工具。■简介
肠道菌群在控制2型糖尿病(T2D)中起重要作用。糙米(BR)具有较高的纤维和镁含量,并且比白米(WR)的血糖指数低,因此可能可以改善肠道菌群,短链脂肪酸(SCFA)和代谢标记物。这项研究旨在比较肠道菌群概况,SCFA水平,以及给定12周基于BR和WR的饮食的T2D患者的人体测量和实验室代谢标记的变化。这项实验前测试设计研究使用目的抽样方法招募了17名口服抗糖尿病药物(OAD)的女性糖尿病患者。对受试者进行了12周的基于BR的饮食,然后进行洗涤2周,以及基于WR的饮食12周。肠道菌群谱和SCFA。在BR干预后,受试者的浓汤,较低的细菌植物,较高的较低的菌类,较高的脂肪菌与菌植物(f/b)比和丁酸酯水平较高。此外,BR显着改善了人体测量和实验室代谢标记以及胰岛素抵抗(HOMA-IR)指数的稳态模型评估(P <0.05)。T2D患者接受了基于BR的饮食12周的肠道菌群谱,丁酸水平,人体测量和实验室代谢标记和胰岛素抵抗的更好。
总结这项随机,双盲,安慰剂对照试验研究了14天的Anaerobutyri- cum soehngenii L2-7补充对餐后葡萄糖水平的25名白人荷兰男性的餐后葡萄糖水平,患有2型糖尿病(T2D)对稳定甲状腺素治疗的影响。主要终点是A. soehngenii与安慰剂对葡萄糖偏移的影响和通过连续葡萄糖监测确定的可变性。次要终点是在标准粉中,血浆短链脂肪酸(SCFA)和血浆短链脂肪酸(SCFA)的静态24小时血压的变化和胆汁酸的变化。结果表明,与安慰剂培养的对照组相比,相比之下,a aa。soehngenii补充14天显着提高了血糖变异性和平均动脉血压,而没有明显变化的SCFA,胆汁酸,肠肠毒素水平或拟人化参数,而没有明显变化。虽然耐受性良好且有效地改善了干预组的血糖控制,但仍需要对更大和更多样化的人口进行进一步的研究来概括这些发现。
摘要:健康母乳喂养的婴儿的肠道菌群通常以双歧杆菌为主。为了模仿母乳喂养的婴儿的微生物群,现代配方是用生物活性和生物生成成分加强的。这些成分促进了婴儿的最佳健康和发展以及婴儿菌群的发展。Here, we used INFOGEST and an in vitro batch fermentation model to investigate the gut health-promoting effects of a commercial infant formula supplemented with a blend containing docosahexaenoic acid (DHA) (20 mg/100 kcal), polydextrose and galactooligosaccharides (PDX/GOS) (4 g/L, 1:1 ratio), milk fat globule membrane (MFGM)(5 g/L),乳铁蛋白(0.6 g/L)和动物双歧杆菌亚种。乳酸,BB-12(BB-12)(10 6 CFU/G)。使用三个健康婴儿的粪便接种,我们评估了菌群的变化,生成效应以及补充测试配方的短链脂肪酸(SCFA)产生的短链脂肪酸(SCFA),并将其与从未含有的碱基配方和母乳对照中获得的数据进行了比较。我们的结果表明,即使在配方的含量消化之后,补充配方仍然可以保持其生物活性并调节婴儿的微生物群组成,促进更快的双歧杆菌生长并刺激SCFA的产生。因此,可以得出结论,含有生物活性混合物的测试配方会促进婴儿肠道菌群和SCFA概况,但与母乳喂养婴儿的测试配方相似,但并不相同。
摘要:肠道菌群和短链脂肪酸(SCFA)与免疫调节和自身免疫性疾病有关。自身免疫性肾脏疾病是由于对抗原的耐受性的丧失,通常是触发不清的。在这篇综述中,我们探讨了肠道微生物组的作用以及疾病,饮食和治疗如何改变肠道菌群联盟。肠道菌群的扰动可能会通过穿透肠道上皮屏障,从系统地诱导微生物群衍生的炎症分子(例如脂糖)(LPS)和其他毒素的易位。 在血流中,这些促炎性介质激活了免疫细胞,这些细胞释放了促炎性分子,其中许多是自身免疫性疾病中的抗原。 肠道细菌的比率与多种自身免疫性肾脏疾病(包括狼疮性肾炎,mpo-anca anca anca Vasculitis and Goodpasture综合征)的较差有关。 肠道中增强SCFA产生细菌的疗法具有强大的治疗潜力。 饮食纤维被肠道细菌发酵,后者又释放了保护肠道屏障的SCFA,并调节对耐受性抗炎状态的免疫反应。 在此,我们描述了当前的研究领域以及利用肠道微生物组作为潜在疗法的策略。肠道菌群的扰动可能会通过穿透肠道上皮屏障,从系统地诱导微生物群衍生的炎症分子(例如脂糖)(LPS)和其他毒素的易位。在血流中,这些促炎性介质激活了免疫细胞,这些细胞释放了促炎性分子,其中许多是自身免疫性疾病中的抗原。肠道细菌的比率与多种自身免疫性肾脏疾病(包括狼疮性肾炎,mpo-anca anca anca Vasculitis and Goodpasture综合征)的较差有关。肠道中增强SCFA产生细菌的疗法具有强大的治疗潜力。饮食纤维被肠道细菌发酵,后者又释放了保护肠道屏障的SCFA,并调节对耐受性抗炎状态的免疫反应。在此,我们描述了当前的研究领域以及利用肠道微生物组作为潜在疗法的策略。
除了食欲调节外,饮食纤维还通过改变养分的吸收和代谢来影响能量平衡。纤维通过将脂肪和碳水化合物捕获在其基质中,从而降低食物中卡路里的生物利用度,从而限制其消化和吸收。这意味着在高纤维餐中消耗的一些卡路里被排出而不是被人体使用,从而有效地降低了整体卡路里的摄入量。此外,结肠中某些纤维的发酵产生短链脂肪酸(SCFA),例如乙酸盐,丙酸和丁酸酯。这些SCFA已被证明会影响能量稳态,减少脂肪的积累并提高胰岛素敏感性,所有这些都有助于体重管理。
摘要 肠道微生物群分解不可消化的淀粉后释放的挥发性小分子,包括短链脂肪酸 (SCFA)、乙酸盐和丙酸盐,可通过特定的 G 蛋白偶联受体 (GPCR) 以类似激素的方式发挥作用。这些 SCFA 的主要 GPCR 靶标是 FFA2 和 FFA3。使用转基因小鼠(其中 FFA2 被一种称为设计药物专门激活的设计受体 (FFA2-DREADD) 的改变形式取代,但 FFA3 保持不变)和新发现的 FFA2-DREADD 激动剂 4-甲氧基-3-甲基苯甲酸 (MOMBA)),我们展示了 FFA2 和 FFA3 的特定功能如何定义 SCFA-肠-脑轴。肠腔内 FFA2/3 的激活会刺激脊髓活动,而肠道 FFA3 的激活会直接调节感觉传入神经元的放电。此外,我们证明 FFA2 和 FFA3 均在背根神经节和结状神经节中功能性表达,它们通过不同的 G 蛋白和机制发出信号来调节细胞钙水平。我们得出结论,FFA2 和 FFA3 在不同水平上发挥作用,为肠道微生物群来源的 SCFA 调节中枢活动提供了一个轴。